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Geometric manipulation of molecules is an essential elementary component in computational modeling 
programs for molecular structure, stability, dynamics, and design. The computational complexity of 
transformation of internal coordinates to Cartesian coordinates was discussed before? The use of rotation 
matrices was found to be slightly more efficient than that of quaternion although quaternion operators have 
been widely advertised for rotational operations, especially in molecular dynamics simulations ofliquids where 
the orientation is a dynamical variable? The discussion on computational efficiency is extended here to a more 
general case in which bond angles and sidechain torsion an읺es are allowed to vary. The algorithm of 
Thompson3 is derived again in terms of quaternions as well as rotation matrices, and an algorithm with optimal 
efficiency is described. The algorithm based on rotation matrices is again found to be slightly more efficient 
than that based on quaternions.
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Introduction ions,瑟 rotation matrices,9 and other transformations10 have
been used, (See Ref 1 for more detailed discussions.)

Cartesian coordinate modeling is popular in molecular Alvarado and Kazer이miaiJ showed that operation in
studies, for example, in molecular dynamics simulations of 
biomolecules.4^ In many other situations, internal coordi­
nates are a natural choice when constraints on internal 
coordinates such as bond lengths and bond angles are to be 
implemented to reduce the number of degrees of freedom. 
Additional dihedral angle constraints from experiments or 
structures of homologous protein sequences can be easily 
incorporated in internal coordinates.

If the dihedral angles are taken from the actual 마mcture, 
and the bond lengths and bond angles are fixed at ideal 
values, the degree of deviation from the actual structure 
increases with the chain len앙h, For example, a protein 
structure with 800 amino acids can show RMSD (Root­
Mean-Square Deviation) as large as 20 A if all the bond 
lengths and bond angles are replaced with ideal values. 
However, changes in the bond lengths and angles can be 
absorbed into small variations in dihedral angles to 
accurately represent the structure. In Ref 6, it is shown that 
protein structures can be represented very accurately (within 
03 A) with ideal bond lengths and bond angles if dihedral 
angles are slightly modified to minimize RMSD, For this 
reason, strategies to take a reduced number of degrees of 
freedom in internal coordinates are popular in protein 
structure prediction and design studies.

When internal coordinates are employed for geometry 
representation, conversion of the internal coordinates to 
Cartesian coordinates is necessary because most of the 
realistic energy functions or scoring functions involve terms 
that are conveniently evaluated in Cartesian coordinates. 
The transformation requires rotation operators: quatem- 

rotation matrix is the most efficient for typical protein 
chains, and operation using quaternion in the matrix form is 
almost equivalent. A more general system than that in Ref 1 
is considered here in that bond angles are not required to be 
kept constant and side chains are not rigid, An efficient 
algorithm, which is equivalent to that of Thompson,3 is 
derived by employing a simple reference state and perform­
ing rotations in the reverse order It is shown again that the 
method using rotation matrix is slightly more efficient than 
quaternion.

A method that requires minimal number of rotation 
operations is described below. The method can be described 
in ab마ract terms, considering rotations as building blocks. 
The method is first described in the context of quaternion 
operators for convenience, and the same method is stated in 
terms of rotation matrices later Efficiencies of the two 
methods using quaternions and rotation matrices are then 
compared.

Method of Constructing a Chain Molecule 
with Minimal Number of Operations

A linear chain involving N atoms is considered. Branches 
can be easily added once the backbone is constructed. This 
method can be combined with an analytical loop closure 
algorithm11 to manipulate chains with internal loops, for 
example, polypeptides with disulfide bonds or cyclic chains.

A linear chain can be fully described by N sets of bond 
lengths bi. bond angles & and dihedral angles 由 as follows:

为={⑴,佛的)"=1, •••/}, (1) 
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where the backbone atoms of the chain are numbered from 1 
to N. bi is the bond len앙h between the nodes at z-1 and 仇 
is the bond angle formed by the three nodes i-2. i-1, and 
and 由 is the dihedral angle defined by the four nodes i-3. 
i-2. i-1, and L Six degrees of freedom, b\. 어, 伍, 由, 0為 and 
如 do not affect the internal geometry of the chain, but 
define the absolute location and orientation of the chain in 
space with respect to 'virtual' nodes z = -2, —I, and 0. 
Therefore, the internal geometry of the chain can be folly 
described by N—\ bond lengths, N-2 bond angles, and N-3 
dihedral angles.

To construct the molecule, simple rotations are applied 
starting from a simple initial arrangement. A straight, linear 
conformation which is laid along the positive x-axis is taken 
as the initial geometry. The initial arrangement is defined by

尸*{(吗缶 0)3=1,…，N}. (2)

Next, Cartesian coordinates for the nodes are determined 
successively Placing successive atoms requires a rotation at 
each step, to the desirable 仇 and @ values. There is a "best" 
way for performing these rotations.

Recall that2」' rotating a vector v about axis u by angle w is 
affected through conjugation by the quaternion q

v—소 (3)

with q given by

' 叫「 …•心cosy,[勿-]*U产力-j]sm万丿*勿_] (8)

J 雄 0
*勿-诲幻7

_ ~ . 0
一 "*0，

書 is the multiplication of。眾(在)，rotation about the x-axis 
by 机 and p」벼、rotation about the z-axis by n-0r.

c。遅,小砖）*"。弓으,5】 (9)

This construction is understood as follows: start morphing 
the chain from its end, node 1; rotate the bond vector (加，0, 
0) about the positive z-axis by angle 兀一& (this enforces 
correct bond angle at node /); rotate about the positive x-axis 
by angle 由 to create the proper dihedral angle; then apply the 
rotation accumulated by placement of all the previous atoms. 
The rotations are simple, either ar이md the x- or z-axis? and 
always applied to a vector on the x-axis. The algorithm can 
thus be implemented very efficiently The calculation of the 
Cartesian coordinate R； for the zth node is now collected as

(由..就、*( 〃一 0 ，、. 
力・ = 妇 *(海3, 아 sir;丿 *"os—广, &sm (10)

q = cos—, u sm— (4) Rz- = Rz_ 1 + , (H)

Here, 애' is the operator of quaternion multiplication, 
defined below (see Eq. 20). The z-th link in the chain is 
placed by performing, in succession, all indicated rotations 
along the chain about the local axes ua by w肽 where k= 1? 2?

The net quaternion defining this rotation, is constructed 
by the product of individual quaternions as

们=，；*...*，2*0, 7=1,2, (5)

where p\ and pi can be set to unit quaternions (p^p = 1) if the 
node 1 and 2 are to be placed on the x-axis for simplicity. It 
is important to note that in this construction, the axes of each 
successive rotation, ua are determined by the effect of all 
previous rotations on the initial vector, u? as

11* = 以_[*니*弟_]. (6)

However, by canying out the rotations in the reverse 
order, the same net rotation can be affected by utilizing the 
initial axes as

_ . . . _ 0. 0 . 0 fr、
们产…切2切！=列切2…*0 , (7)

The reason for this, obvious geometrically, can be also seen 
as follows:

where /= 1? 2?…，R R)and first few quaternions can be 
chosen to give simple arrangement for the first few atoms 
when only internal arrangement is of interest, or be chosen 
to place the chain in a precise location and orientation 
depending on the purposes.

Comparison of Rotation Matrix and Quaternion Methods

Rotation matrix method. One can construct a 3 x 3 
rotation matrix U, for each (어, 0) pair, and multiply by a 
vector to get

R, = Ri + Zg(00,,...00)

Ui(0T0T，...00)...3(00)ro， (12)

where ro is an arbitrary unit vector The z-th rotation matrix 
Ui depends on all the angles indexed 1 through i because the 
axis of rotation changes with previous angles. This can be 
avoided if rotations are performed in the reverse order:

R, = R,t + 財片厲0坦(％02)…矿(00)&，(13) 

where the superscript 0 implies rotation about fixed axes. 
The rotation matrix l" can be expressed as a multiplication 
of two rotation matrices U人 0) and〔■(©/)，where 以 is 
matrix for rotation by 兀一& around the z-axis, and Ux for 
rotation by @ ar이md the x-axis. This simplification is made 
possible by setting ro equal to a unit vector 程 along the x- 
axis, The resulting is
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矿 (00) = u*0)亿(이

. (14)

'1 0 0 '-cos 0i -sin 0i 0、

0 cos 在 一si*為 sii响 一cosQ 0
、、0 sin^- cos 在丿 、o o

Each node i is added to a growing chain with i-1 nodes by 
updating the accumulated rotation,

卩,=6亿?...矿_[矿=匸_[矿， (15)

applying the rotation on he vector (稣 0,0), and translating 
the resulting vector by Rm .

The computational cost of this procedure is counted as 
follows:

L Calculation of cosines and sines, cos々，cos ft, and 
sin侏

2. Rotation update, V/ = Vt_ ] [■(©/)(12 multiplications 
and 6 additions).

3. Rotation update, Vi = 匕‘ UW (12 multiplications 
and 6 additions).

4. First column of 矿 (no cost).
5. Scaling by b, and shift by R/-i (3 multiplications and 3 

additions).
In fact, the above algorithm is equivalent to the algorithm 
described by Thompson3 in 1967 using rotation matrices in a 
local coordinate system. A physical procedure of chain 
construction is provided here, and an algorithm using 
quaternions can be easily derived using this procedure, as 
shown above.

The computational cost of adding an atom at a branching 
point is the same as the above if the rotation matrix Vi has to 
be updated for later atoms connected to it, If an atom is 
terminal, only the first column of that rotation matrix is 
required, which is

‘ -cos 0i 、

Vi_l sinQ cos加. (16)
、、si莒侪 sin。、

The cost of adding a terminal node is therefore 11 multi­
plications and 6 additions for Eq. (16) and 3 multiplications 
and 3 additions for scaling by b, and shift by Rz, in addition 
to the cost of calculating cosines and sines.

Quaternion method. Quaternions, instead of rotation 
matrices, can be used to accumulate successive rotations as 
follows:

R； = R；t +(妇痛?..彼)&(斯/..房/, (17)

where is given by Eq. (9). The four components of the 
quaternions pW and 〃芸(0) are

W©) = (cos* sing, 0, 0), (18)

/") = [cos윽으, 0, 0, sin

Noting12 that multiplication of two quaternions a =(Q), a) 

and b = (bo, b) is given by

a^b = (a0&0-a • b, aob + &oa + a x b) ? (20)

and the rotation matrix corresponding to quaternion q = (g©, 
어i, 어丄 어3)is

/ 2 . 2 、
00+ 们 — 1/2 幻이2 —%이3 幻이3—이。이2

U(0)= 2 이 E2부%이3 00*02—1/2 이2이3— 이。이 i ，(21)

I 幻이3—이0이2 이2이3+이。이 i 어0 부어 3—U2 丿

the cost of computation for adding atom i is c이mted as 
follows:

L Division of the angles Q and 0 by 2 (2 divisions).
，、. .. 如.飢 02. Calculation of cosines and sines, cos—, sm—, cos—?

() 2 2 2
and sii*.

3. Quaternion update, qj ="区眾(在)(8 multiplications, 
4 additions).

4. Quaternion update, qi = 幻'〃芸(0) (8 multiplications, 4 
additions).

5. First column of U(qi)/2 (6 multiplications, 4 additions).
6. Scaling by 2加 and shift by R/-i (4 multiplications, 3 

additions).
The computational cost of adding a terminal atom is the 

same as above because qi needs to be calculated to get the 
first column of U(qi)l2.

Comparison of computational efficiency. The minimum 
number of mathematical operations required for calculation 
of the position of one atom to be added to a growing chain is 
summarized in Table 1.

The total number of operations for constructing the whole 
chain is approximately the number of atoms times the above 
numbers. Note that this linear dependence on the number of 
atoms comes from the reverse rotation. If the operations cos 
and sin are assumed to be 20 times more expensive than +, 

x, and :, which are assumed to be equal in 
computational time, the relative computational co마s are 122 
and 123 for rotation matrix and quaternion methods, 
respectively If, alternatively, the computation of cos and sin 
is performed using the familiar half-tangent formulas

Table 1. Comparison of the number of operations for the two 
methods

Method + or- X 4- cos sin

Rotation matrix 15 27 0 2 2
Quaternion 15 26 2 2 2

Table 2. Comparison of the number of operations for the two 
methods when applied to two proteins of dilferent sizes (cos or sin 
operations were not counted here.)

(19)
Method Kinase Keratin

Rotation matrix 30391 76931
Quaternion 40549 103759
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cos0= -一一으;, sin0= 2혀 x where u = tan(gj, (22) 
1 + u 1 + u 、妇

the costs of the two methods then become 96 and 95 FLOPs, 
respectively (again assuming the cost of the tangent as 20 
operations).

Using rotation matrices or quaternions for accumulating 
rotations for non-terminal atoms are therefore almost 
equivalent in terms of computational cost, but quaternions 
require more operations for terminal atoms. Overall, rotation 
matrix calculation is more efficient, the exact cost depending 
on the number of terminal atoms. Table 2 shows a com­
parison of the number of FLOPs when the two methods are 
applied to two proteins, Abl tyrosine kinase and heparin- 
binding growth factor, following Ref 1. The kinase has 62 
amino acids: MWPNLFVALYDFVASGDNTLSITKGEK- 
LRVLGYNHNGEWCEAQTKNGQGWVPSNYITPVNS. 
Keratin has 154 amino acids: MAAGSITTLPALPEDGG- 
SGAFPPGHFKDPKRLYCKNGGFFLRIHPDGRVDGVR 
EKSDPHIKLQLQAEERGWSIKGVSANRYLAMKEDG 
RLLASKSVTDECFFFERLESNNYNTYRSRKYTSWVA 
LKRTGQYKLGSKTGPGQKAILFLPMSAKS, According 
to Table 2, the rotation matrix method is about 25% more 
efficient, because of the differences in FLOPs required to 
invert terminal atoms.

Discussion

An algorithm with minimal rotation operations for inter­
conversions between internal and Cartesian coordinate 
systems for a molecular chain is described, starting from a 
simple, straight reference state and applying rotations on the 
chain backwards. The rotation matrix formula is equivalent 
to that of Thompson? The number of algebraic operations is 
reduced compared to the methods described in Ref 1 due to 
the use of a simpler reference. In Ref 1, the cost is 70 

operations (+, —，x, and -^) for calculation of operator and 
15 for placement of atom when rotation matrices are used, 
and 74 and 15, respectively, when quaternions are used. In 
the algorithms described here, the cost is 36 and 6 with 
rotation matrices, and 37 and 6 with quaternions. (All 
methods require equal numbers of sin/cos evaluations). The 
conclusion that the use of rotation matrices results in slightly 
more efficient computation than the use of quaternions is 
maintained. Efficient transformation of coordinate systems 
can facilitate studies on protein structure especially when 
local constraints are incorporated in natural manners.
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