DOI QR코드

DOI QR Code

Simple Synthetic Manipulation Allowing for Morphological Diversity of Porphyrin-Based Microcrystals

  • Received : 2010.10.28
  • Accepted : 2010.12.13
  • Published : 2011.02.20

Abstract

Amphiphilic (porphyrin)Sn$(OH)_2$ molecular building block can directly translate into well-defined solid-state microcrystalline structures. The crystalline diamond plates are obtained from ethanol and crystalline square plates are grown from methanol solution. With a simple synthetic manipulation during the microcrystal growth, the morphologies can be controlled by adopting different molecular packing. Consequently, morphologies of microcrystals have been diversified. Furthermore, the macroscopic crystals were obtained in the presence of cetyltrimethylammonium bromide (CTAB).

Keywords

References

  1. Chen, J.; Lim, B.; Lee, E. P.; Xia, Y. Nano Today 2009, 4, 81. https://doi.org/10.1016/j.nantod.2008.09.002
  2. Zhang, L.; Webster, T. J. Nano Today 2009, 4, 66. https://doi.org/10.1016/j.nantod.2008.10.014
  3. Zhao, Y.; Jiang, L. Adv. Mater. 2009, 21, 3621. https://doi.org/10.1002/adma.200803645
  4. Shen, J.; Sun, L.-D.; Yan, C.-H. Dalton Trans. 2008, 5687.
  5. Liu, Y.; Liu, J. Acc. Chem. Res. 2007, 40, 315. https://doi.org/10.1021/ar600053g
  6. Teo, B. K.; Sun, X. H. Chem. Rev. 2007, 107, 1454. https://doi.org/10.1021/cr030187n
  7. Zang, L.; Che, Y.; Moore, J. S. Acc. Chem. Res. 2008, 41, 1596. https://doi.org/10.1021/ar800030w
  8. Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Hagele, C.; Scalia, G.; Judele, R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.; Tosoni, M. Angew. Chem. Int. Ed. 2007, 46, 4832. https://doi.org/10.1002/anie.200604203
  9. Zhang, Y.; Chen, P.; Jiang, L.; Hu, W.; Liu, M. J. Am. Chem. Soc. 2009, 131, 2756. https://doi.org/10.1021/ja805891k
  10. Briseno, A. L.; Mannsfeld, S. C. B.; Jenekhe, S. A.; Bao, Z.; Xia, Y. Mater. Today 2008, 11, 38.
  11. Cui, S.; Liu, H.; Gan, L.; Li, Y.; Zhu, D. Adv. Mater. 2008, 20, 2918. https://doi.org/10.1002/adma.200800619
  12. Jiang, L.; Fu, Y.; Li, H.; Hu, W. J. Am. Chem. Soc. 2008, 130, 3937. https://doi.org/10.1021/ja077600j
  13. Tang, M. L.; Reichardt, A. D.; Miyaki, N.; Stoltenberg, R. M.; Bao, Z. J. Am. Chem. Soc. 2008, 130, 6064. https://doi.org/10.1021/ja8005918
  14. Iavicoli, P.; Simon-Sorbed, M.; Amabilino, D. B. New J. Chem. 2009, 33, 358. https://doi.org/10.1039/b815177f
  15. Jintoku, H.; Sagawa, T.; Takafuji, M.; Ihara, H. Org. Biomol. Chem. 2009, 7, 2430. https://doi.org/10.1039/b818358a
  16. Kojima, T.; Harada, R.; Nakanishi, T.; Kaneko, K.; Fukuzumi, S. Chem. Mater. 2007, 19, 51. https://doi.org/10.1021/cm062031k
  17. Li, C.; Ly, J.; Lei, B.; Fan, W.; Zhang, D.; Han, J.; Meyyappan, M.; Thompson, M.; Zhou, C. J. Phys. Chem. B 2004, 108, 9646. https://doi.org/10.1021/jp0498421
  18. Schwab, A. D.; Smith, D. E.; Bond-Watts, B.; Johnston, D. E.; Hone, J.; Johnson, A. T.; Paula, J. C. d.; Smith, W. F. Nano Lett. 2004, 4, 1261.
  19. Wang, Z.; Medforth, C. J.; Shelnutt, J. A. J. Am. Chem. Soc. 2004, 126, 15954. https://doi.org/10.1021/ja045068j
  20. Wang, Z.; Medforth, C. J.; Shelnutt , J. A. J. Am. Chem. Soc. 2004, 126, 16720. https://doi.org/10.1021/ja044148k
  21. Schwab, A. D.; Smith, D. E.; Rich, C. S.; Young, E. R.; Smith, W. F.; Paula, J. C. D. J. Phys. Chem. B 2003, 107, 11339. https://doi.org/10.1021/jp035569b
  22. Mann, S. Angew. Chem. Int. Ed. 2000, 39, 3393. https://doi.org/10.1021/jp035569b
  23. Kudora, T.; Irisawa, T.; Ookawa, A. J. Cryst. Growth 1977, 42, 41. https://doi.org/10.1016/0022-0248(77)90176-2
  24. Mullin, J. W. Crystallization; Butterworths: London, 1971. https://doi.org/10.1016/0022-0248(77)90176-2
  25. Buckley, H. E. Crystal Growth; Wiley: New York, 1951. https://doi.org/10.1016/0022-0248(77)90176-2
  26. Adair, J. H.; Suvaci, E. Curr. Opin. Colloid Interface Sci. 2000, 5, 160. https://doi.org/10.1016/S1359-0294(00)00049-2
  27. Lee, S. J.; Mulfort, K. L.; Zuo, X.; Goshe, A. J.; Wesson, P. J.; Nguyen, S. T.; Hupp, J. T.; Tiede, D. M. J. Am. Chem. Soc. 2008, 130, 836. https://doi.org/10.1021/ja077661h
  28. Lee, S. J.; Cho, S.-H.; Mulfort, K. L.; Tiede, D. M.; Hupp, J. T.; Nguyen, S. T. J. Am. Chem. Soc. 2008, 130, 16828. https://doi.org/10.1016/S1359-0294(00)00049-2
  29. Lee, S. J.; Jensen, R. A.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. J. Mater. Chem. 2008, 18, 3640. https://doi.org/10.1021/ja077661h
  30. Medforth, C. J.; Wang, Z.; Martin, K. E.; Song, Y.; Jacobsenc, J. L.; Shelnutt, J. A. Chem. Commun. 2009, 7261. https://doi.org/10.1021/ja804014y
  31. Lee, S. J.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. Adv. Mater. 2008, 20, 3543. https://doi.org/10.1039/b804629h
  32. Lee, S. J.; Hupp, J. T.; Nguyen, S. T. J. Am. Chem. Soc. 2008, 130, 9632. https://doi.org/10.1021/ja801733t
  33. Wang, Z.; Li, Z.; Medforth, C. J.; Shelnutt, J. A. J. Am. Chem. Soc. 2007, 129, 2440. https://doi.org/10.1002/adma.200800003
  34. Sendt, K.; Johnston, L. A.; Hough, W. A.; Crossley, M. J.; Hush, N. S.; Reimers, J. R. J. Am. Chem. Soc. 2002, 124, 9299. https://doi.org/10.1021/ja801733t
  35. Hunter, C. A.; Sanders, J. K. M.; Stone, A. J. Chem. Phys. 1989, 133, 395. https://doi.org/10.1021/ja068250o
  36. Auvray, X.; Petipas, C.; Anthore, R.; Rico, I.; Lattes, A. J. Phys. Chem. 1989, 93, 7458. https://doi.org/10.1021/ja020081u
  37. Hakemi, H.; Varanasi, P. P.; Tcheurekdjian, N. J. Phys. Chem. 1987, 91, 120. https://doi.org/10.1021/j100285a028

Cited by

  1. Preparation of Self-Assembled Crystalline Microparticles with Bispyridyl Zn-Porphyrin vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1317