• Title/Summary/Keyword: Molecular evolution

Search Result 523, Processing Time 0.027 seconds

MECHANISM INDUCING GAS SUPPLY TO THE CENTRAL 10 PARSEC OF THE MILKY WAY

  • Morgan, Hannah L.;Kim, Sungsoo S.;Shin, Jihye;Chun, Kyungwon;Park, So-Myoung;Lee, Joowon;Minh, Young Chol
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.6
    • /
    • pp.117-123
    • /
    • 2020
  • We investigate the plausibility of mass return, from stellar mass loss processes within the central ~100 pc region of the Milky Way (the inner nuclear bulge), as a mass supply mechanism for the Circumnuclear Disk (CND). Gas in the Galactic disk migrates inward to the Galactic centre due to the asymmetric potential caused by the Galactic bar. The inward migration of gas stops and accumulates to form the central molecular zone (CMZ), at 100-200 pc from the Galactic center. It is commonly assumed that stars have formed in the CMZ throughout the lifetime of the Galaxy and have diffused inward to form a 'r-2 stellar cusp' within the inner nuclear bulge. We propose that the stars migrating inward from the CMZ supply gas to the inner nuclear bulge via stellar mass loss, resulting in the formation of a gas disk along the Galactic plane and subsequent inward migration down to the central 10 pc region (CND). We simulate the evolution of a gas distribution that initially follows the stellar distribution of the aforementioned stellar cusp, and illustrate the potential gas supply toward the CND.

Atomistic simulations of defect accumulation and evolution in heavily irradiated titanium for nuclear-powered spacecraft

  • Hai Huang;Xiaoting Yuan;Longjingrui Ma;Jiwei Lin;Guopeng Zhang;Bin Cai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2298-2304
    • /
    • 2023
  • Titanium alloys are expected to become one of the candidate materials for nuclear-powered spacecraft due to their excellent overall performance. Nevertheless, atomistic mechanisms of the defect accumulation and evolution of the materials due to long-term exposure to irradiation remain scarcely understood by far. Here we investigate the heavy irradiation damage in a-titanium with a dose as high as 4.0 canonical displacements per atom (cDPA) using atomistic simulations of Frenkel pair accumulation. Results show that the content of surviving defects increases sharply before 0.04 cDPA and then decreases slowly to stabilize, exhibiting a strong correlation with the system energy. Under the current simulation conditions, the defect clustering fraction may be not directly dependent on the irradiation dose. Compared to vacancies, interstitials are more likely to form clusters, which may further cause the formation of 1/3<1210> interstitial-type dislocation loops extended along the (1010) plane. This study provides an important insight into the understanding of the irradiation damage behaviors for titanium.

Evolution of Star Formation Rate - Density Relation over Cosmic Time in a Simulated Universe: the Observed Reversal Reproduced

  • Hwang, Ho Seong;Shin, Jihye;Song, Hyunmi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.65.3-66
    • /
    • 2020
  • We use the IllustrisTNG cosmological hydrodynamical simulation to study the evolution of star formation rate (SFR)-density relation over cosmic time. We construct several samples of galaxies at different redshifts from z=2.0 to z=0.0, which have the same comoving number density. The SFR of galaxies decreases with local density at z=0.0, but its dependence on local density becomes weaker with redshift. At z≳1.0, the SFR of galaxies increases with local density (reversal of the SFR-density relation), and its dependence becomes stronger with redshift. This change of SFR-density relation with redshift still remains even when fixing the stellar masses of galaxies. The dependence of SFR on the distance to a galaxy cluster also shows a change with redshift in a way similar to the case based on local density, but the reversal happens at a higher redshift, z~1.5, in clusters. On the other hand, the molecular gas fraction always decreases with local density regardless of redshift at z=0.0-2.0 even though the dependence becomes weaker when we fix the stellar mass. Our study demonstrates that the observed reversal of the SFR-density relation at z≳1.0 can be successfully reproduced in cosmological simulations. Our results are consistent with the idea that massive, star-forming galaxies are strongly clustered at high redshifts, forming larger structures. These galaxies then consume their gas faster than those in low-density regions through frequent interactions with other galaxies, ending up being quiescent in the local universe.

  • PDF

Transcript Profiling of Toll-Like Receptor mRNAs in Selected Tissues of Mink (Neovison vison)

  • Tong, Mingwei;Yi, Li;Cheng, Yuening;Zhang, Miao;Cao, Zhigang;Wang, Jianke;Zhao, Hang;Lin, Peng;Yang, Yong;Cheng, Shipeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2214-2223
    • /
    • 2016
  • Toll-like receptors (TLRs) can recognize conserved molecular patterns and initiate a wide range of innate and adaptive immune responses against invading infectious agents. The aim of this study was to assess the transcript profile of mink TLRs (mTLRs) in mink peripheral blood mononuclear cells (PBMCs) and a range of tissues, and to explore the potential role of mTLRs in the antiviral immune response process. The results indicated that the mTLR partial nucleotide sequences had a high degree of nucleotide identity with ferret sequences (95-98%). Phylogenetic analysis showed that mammalian TLRs grouped into five TLR families, with a closer relationship of the mTLRs with those of ferret than the other mammalian sequences. Moreover, all the mTLRs were ubiquitously expressed in lymphoid organs (spleen and lymph nodes) and PBMCs. Interestingly, the mTLR expression patterns in lung, uterus, and heart showed quite a lot of similarity. Another remarkable observation was the wide expression of mTLR1-3 mRNAs in all tissues. Among the analyzed tissues, skeletal muscle was revealed to being the lowest repertoire of mTLR expression. Additionally, mink PBMCs exposed to the canine distemper virus revealed significant upregulation of mTLR2, mTLR4, mTLR7, and mTLR8 mRNAs, indicating that mTLRs have a role in innate immunity in the mink. Collectively, our results are the first to establish the basic expression patterns of mTLRs and the relationship between mTLRs and a virus, which will contribute to better understanding of the evolution and the functions of mTLRs in the innate immune system in minks.

In Vitro Evolution of Lipase B from Candida antarctica Using Surface Display in Hansenula polymorpha

  • Kim, So-Young;Sohn, Jung-Hoon;Pyun, Yu-Ryang;Yang, In-Seok;Kim, Kyung-Hyun;Choi, Eui-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1308-1315
    • /
    • 2007
  • Lipase B from Candida antarctica (CalB) displayed on the cell surface of H. polymorpha has been functionally improved for catalytic activity by molecular evolution. CalB was displayed on the cell surface by fusing to a cell-wall anchor motif (CwpF). A library of CalB mutants was constructed by in vivo recombination in H. polymorpha. Several mutants with increased whole-cell CalB activity were acquired from screening seven thousand transformants. The two independent mutants CalB 10 and CalB 14 showed an approximately 5 times greater whole-cell activity than the wild-type. When these mutants were made as a soluble form, CalB 10 showed 6 times greater activity and CalB 14 showed an 11 times greater activity compared with the wild-type. Sequence analyses of mutant CALB genes revealed amino acid substitutions of $Leu^{278}Pro$ in CalB10 and $Leu^{278}Pro/Leu^{219}Gln$ in CalB14. The substituted $Pro^{278}$ in both mutants was located near the proline site of the ${\alpha}$10 helix. This mutation was assumed to induce a conformational change in the ${\alpha}$10 helix and increased the $k_{cat}$ value of mutant CalB approximately 6 times. Site-directed mutagenized CalB, LQ ($Leu^{219}Gln$) was secreted into the culture supernatant at an amount of approximately 3 times more without an increase in the CalB transcript level, compared with the wild-type.

Alu sequences and molecular features (Alu 서열과 분자생물학적 특징)

  • Park Eun-Sil;Hong Kyung-Won;Kim Heui-Soo
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.1028-1039
    • /
    • 2004
  • During the past 65 million years, Alu sequences have been amplified through RNA-polymerase IIIderived transcripts, and have reached the copy number of about 1.4 million in primate genomes. They are the largest family among mobile genetic elements in human genome and consist of ten percent of the human genome. Alu sequences are thought to be functionless genetically, but many researchers have proved new function and disease implication. Alu elements make the genome insertional mutation, Alu-mediated recombination events, and unexpected splicing site and change gene structures, protein sequences, splicing motifs and expression patterns. In this review, the structure and origin of Alu, consensus sequences of Alu subfamilies, evolution and distribution of Alu, and their related diseases were described. We also indicated new research direction of Alu elements in relation to evolution and disease.

Current Mechanistic Approaches to the Chemoprevention of Cancer

  • Steele, Vernon E.
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.78-81
    • /
    • 2003
  • The prevention of cancer is one of the most important public health and medical practices of the $21^{st}$ century. We have made much progress in this new emerging field, but so much remains to be accomplished before widespread use and practice become common place. Cancer chemoprevention encompasses the concepts of inhibition, reversal, and retardation of the cancer process. This process, called carcinogenesis, requires 20-40 years to reach the endpoint called invasive cancer. It typically follows multiple, diverse and complex pathways in a stochastic process of clonal evolution. These pathways appear amenable to inhibition, reversal or retardation at various points. We must therefore identify key pathways in the evolution of the cancer cell that can be exploited to prevent this carcinogenesis process. Basic research is identifying many genetic lesions and epigenetic processes associated with the progression of precancer to invasive disease. Many of these early precancerous lesions favor cell division over quiescence and protect cells against apoptosis when signals are present. Many oncogenes are active during early development and are reactivated in adulthood by aberrant gene promoting errors. Normal regulatory genes are mutated, making them insensitive to normal regulatory signals. Tumor suppressor genes are deleted or mutated rendering them inactive. Thus there is a wide range of defects in cellular machinery which can lead to evolution of the cancer phenotype. Mistakes may not have to appear in a certain order for cells to progress along the cancer pathway. To conquer this diverse disease, we must attack multiple key pathways at once for a predetermined period of time. Thus, agent combination prevention strategies are essential to decrease cancer morbidity. Furthermore, each cancer type may require custom combination of prevention strategies to be successful.

Recent progress in studies of the Cladocera (Crustacea: Branchiopoda) of South Korea with seven new records for the Korean Peninsula

  • Kotov, Alexey A.;Sinev, Artem Y.;Garibian, Petr G.;Neretina, Anna N.;Jeong, Hyun Gi;Lee, Wonchoel;Chae, Kyu-Seok;Min, Gi-Sik
    • Journal of Species Research
    • /
    • v.6 no.spc
    • /
    • pp.227-246
    • /
    • 2017
  • A study of the Cladocera (Crustacea: Branchiopoda) from the Korean Peninsula resulted in the checklist of Jeong et al. (2014). Several sampling campaigns conducted by our team since 2014, with the framework of the programs supported by the National Institute of Biological Resources (NIBR), have resulted in a considerable increase in the number of water bodies studied in South Korea. In this report, seven new records for the Korean Peninsula are provided: (1) Macrothrix vietnamensis Silva-Briano, Dieu and Dumont, 1999; (2) Disparalona chappuisi (Brehm, 1931); (3) Pleuroxus(Picripleuroxus) quasidenticulatus (Smirnov, 1996); (4) Acroperus africanus Neretina and Kotov, 2015; (5) Alona ossiani herricki Sinev, 2013; (6) Coronatella trachystriata (Chen, Zhang and Liu, 1994); (7) Leydigia louisi Jenkin, 1934. Most of these taxa belong to the southern thermophilic complex. In addition several populations of Pleuroxus (Picripleuroxus) denticulatus Birge, 1879 and Pseudochydorus globosus (Baird, 1843) were re-studied, and their presence in Korea is confirmed. Through increased collection efforts and the application of molecular methods we are confident that more new records of Korean fauna will be published in the near future.

Improvement of Photoheterotrophic $H_2$ production of Rhodobacter sphaeroides by Removing Ammonium Ion Effect Exerted on Nitrogenase (Rhodobacter sphaeroides의 질소고정효소에 미치는 암모니움 이온 효과 제거를 통한 수소생성 증진)

  • Jin, Sang-Hoon;Kim, Mi-Sun;Lee, Jeong-Kug
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.418-424
    • /
    • 2005
  • Photoheterotrophic evolution of molecular hydrogen by Rhodobacter sphaeroides is mediated by nitrogenase that is regulated transcriptionally and post-translationally by ammonium ion. Two PII-like proteins, GlnB and GlnK, play key roles in mediating inhibition and repression of nitrogenase in the presence of ammonium ion. glnB and glnK of R. sphaeroides were interrupted to abolish the ammonium ion effect controlling nitrogenase. Ammonium ion effect was still observed in mutant having an interruption in either glnB or glnK. However, the nitrogenase activity of glnB-glnK double mutant is not affected by ammonium ion. $H_2$ evolution was improved by increasing gene dosages of nitrogenase-coding genes, nifHDK in trans in glnB-glnK double mutant.

Genetic Evolution and Characteristics of Ichthyotoxic Cochlodinium polykrikoides(Gymnodiniales, Dinophyceae) (어류치사성 Cochlodinium polykrikoides 적조생물의 유전적 진화 및 특성)

  • Cho, Eun-Seob;Jeong, Chang-Su
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1453-1463
    • /
    • 2007
  • This study presents a molecular phylogenetic analysis of the harmful dinoflagellate Cochlodinium polykrikoides, by use of partial sequence of small subunit (SSU) rRNA gene from most of the major taxa(24 species) in dinoflagellates. The class Dinophyceae clade formed a strong monophyletic relationship with C. polykrikoides and several taxa. On the basis of deeper nodes, the phylogenetic relationships placed C. polykrikoides closer to the order Prorocentrales rather than to the order Gymnodiniales, which was supported by a strong bootstrap value (100%) in the analyses of Neighbor-Joining and Parsimony methods. There is strong support for C. polykrikoides being placed in the same branch as Gymnodiniaceae and being connected in a clade with Prororcentrum micans among Prorocentrales. Morphological data show that C. polykrikoides is well associated with the genus Gyrodinium; however, this species is genetically closer to Gymnodinium than to Gyrodinium. The placement of C. polykrikoides always formed an independent branch separated from other dinoflagellates. In conclusion, planktonic P. micans plays an important role as an ancestor of Gymnodinium, whereas C. polykrikoides appears to be used an intermediate position between P. micans and Gymnodinium based on evolution.