Browse > Article

In Vitro Evolution of Lipase B from Candida antarctica Using Surface Display in Hansenula polymorpha  

Kim, So-Young (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Sohn, Jung-Hoon (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Pyun, Yu-Ryang (Department of Biotechnology, Yonsei University)
Yang, In-Seok (Graduate School of Biotechnology, Korea University)
Kim, Kyung-Hyun (Graduate School of Biotechnology, Korea University)
Choi, Eui-Sung (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.8, 2007 , pp. 1308-1315 More about this Journal
Abstract
Lipase B from Candida antarctica (CalB) displayed on the cell surface of H. polymorpha has been functionally improved for catalytic activity by molecular evolution. CalB was displayed on the cell surface by fusing to a cell-wall anchor motif (CwpF). A library of CalB mutants was constructed by in vivo recombination in H. polymorpha. Several mutants with increased whole-cell CalB activity were acquired from screening seven thousand transformants. The two independent mutants CalB 10 and CalB 14 showed an approximately 5 times greater whole-cell activity than the wild-type. When these mutants were made as a soluble form, CalB 10 showed 6 times greater activity and CalB 14 showed an 11 times greater activity compared with the wild-type. Sequence analyses of mutant CALB genes revealed amino acid substitutions of $Leu^{278}Pro$ in CalB10 and $Leu^{278}Pro/Leu^{219}Gln$ in CalB14. The substituted $Pro^{278}$ in both mutants was located near the proline site of the ${\alpha}$10 helix. This mutation was assumed to induce a conformational change in the ${\alpha}$10 helix and increased the $k_{cat}$ value of mutant CalB approximately 6 times. Site-directed mutagenized CalB, LQ ($Leu^{219}Gln$) was secreted into the culture supernatant at an amount of approximately 3 times more without an increase in the CalB transcript level, compared with the wild-type.
Keywords
CalB; directed evolution; Hansenula polymorpha; lipase; surface display;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 9  (Related Records In Web of Science)
연도 인용수 순위
1 Agaphonov, M. O., P. M. Trushkina, J. H. Sohn, E. S. Choi, S. K. Rhee, and M. D. Ter-Avanesyan. 1999. Vectors for rapid selection of integrants with different plasmid copy numbers in the yeast Hansenula polymorpha DL1. Yeast 15: 541-551   DOI   ScienceOn
2 Gellissen, G. 2000. Heterologous protein production in methylotrophic yeasts. Appl. Microbiol. Biotechnol. 54: 741-750   DOI   ScienceOn
3 Hoegh, I., S. Partkar, T. Halkier, and M. T. Hansen. 1995. Two lipases from Candida antarctica: Cloning and expression in Aspergillus oryzae. Can. J. Bot. 73: S869-S875   DOI
4 Hollenberg, C. P. and G. Gellissen. 1997. Production of recombinant proteins by methylotrophic yeasts. Curr. Opin. Biotechnol. 8: 554-560   DOI   ScienceOn
5 Kang, H. A., J. H. Sohn, E. S. Choi, B. H. Chung, M. H. Yu, and S. K. Rhee. 1998. Glycosylation of human alpha 1- antitrypsin in Saccharomyces cerevisiae and methylotrophic yeasts. Yeast 14: 371-381   DOI   ScienceOn
6 Kim, S. Y., J. H. Sohn, J. H. Bae, Y. R. Pyun, M. O. Agaphonov, M. D. Ter-Avanesyan, and E. S. Choi. 2003. Efficient library construction by in vivo recombination with a telomere-originated autonomously replicating sequence of Hansenula polymorpha. Appl. Environ. Microbiol. 69: 4448-4454   DOI   ScienceOn
7 Magnusson, A. O., J. C. Rotticci-Mulder, A. Santagostino, and K. Hult. 2005. Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B. Chembiochem 6: 1051-1056   DOI   ScienceOn
8 Uppenberg, J., M. T. Hansen, S. Patkar, and T. A. Jones. 1994. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2: 293-308   DOI   ScienceOn
9 Washida, M., S. Takahashi, M. Ueda, and A. Tanaka. 2001. Spacer-mediated display of active lipase on the yeast cell surface. Appl. Microbiol. Biotechnol. 56: 681-686   DOI   ScienceOn
10 Zhang, N., W. C. Suen, W. Windsor, L. Xiao, V. Madison, and A. Zaks. 2003. Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution. Protein Eng. 16: 599-605   DOI
11 Moon, M.-W., J.-K. Lee, T.-K. Oh, C.-S. Shin, and H.-K. Kim. 2006. Gene cloning of Streptomyces phospholipase D P821 suitable for synthesis of phosphatidylserine. J. Microbiol. Biotechnol. 16: 408-413   과학기술학회마을
12 Holm, C., D. W. Meeks-Wagner, W. L. Fangman, and D. Botstein. 1986. A rapid, efficient method for isolating DNA from yeast. Gene 42: 169-173   DOI   ScienceOn
13 Gellissen, G., Z. A. Janowicz, A. Merckelbach, M. Piontek, P. Keup, U. Weydemann, C. P. Hollenberg, and A. W. Strasser. 1991. Heterologous gene expression in Hansenula polymorpha: Efficient secretion of glucoamylase. Biotechnology (NY) 9: 291-295   DOI   ScienceOn
14 Patkar, S., J. Vind, E. Kelstrup, M. W. Christensen, A. Svendsen, K. Borch, and O. Kirk. 1998. Effect of mutations in Candida antarctica B lipase. Chem. Phys. Lipids 93: 95- 101   DOI
15 Farinas E. T., T. Bulter, and F. H. Arnold. 2001. Directed enzyme evolution. Curr. Opin. Biotechnol. 12: 545-551   DOI   ScienceOn
16 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratoty Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N
17 Schreuder, M. P., A. T. Mooren, H. Y. Toschka, C. T. Verrips, and F. M. Klis. 1996. Immobilizing proteins on the surface of yeast cells. Trends Biotechnol. 14: 115-120   DOI   ScienceOn
18 Uppenberg, J., N. Ohrner, M. Norin, K. Hult, G. J. Kleywegt, S. Patkar, V. Waagen, T. Anthonsen, and T. A. Jones. 1995. Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. Biochemistry 34: 16838-16851   DOI   ScienceOn
19 Wittrup, K. D. 2001. Protein engineering by cell-surface display. Curr. Opin. Biotechnol. 12: 395-399   DOI   ScienceOn
20 Anderson, E. M., K. M. Larsson, and O. Kirk. 1998. One biocatalyst many applications: The use of Candida antarctica B-lipase in organic synthesis. Biocatal. Biotransform. 16: 181-204   DOI   ScienceOn
21 Ivanovski, G. F., F. Gubensek, and J. Pungercar. 2002. mRNA secondary structure can greatly affect production of recombinant phospholipase A(2) toxins in bacteria. Toxicon 40: 543-549   DOI   ScienceOn
22 Yoon, M. Y., P. K. Shin, Y. S. Han, S. H. Lee, J. K. Park, and C. S. Cheong. 2004. Isolation of an Acinetobacter junii SY- 01 strain producing an extracellular lipase enantioselectively hydrolyzing itaconazole precursor, and some properties of the lipase. J. Microbiol. Biotechnol. 14: 97-104
23 Sohn, J. H., E. S. Choi, H. A. Kang, J. S. Rhee, and S. K. Rhee. 1999. A family of telomere-associated autonomously replicating sequences and their functions in targeted recombination in Hansenula polymorpha DL-1. J. Bacteriol. 181: 1005-1013
24 Veale, R. A., M. L. Giuseppin, H. M. van Eijk, P. E. Sudbery, and C. T. Verrips. 1992. Development of a strain of Hansenula polymorpha for the efficient expression of guar alpha-galactosidase. Yeast 8: 361-372   DOI   ScienceOn
25 Qian, Z. and S. Lutz. 2005. Improving the catalytic activity of Candida antarctica lipase B by circular permutation. J. Am. Chem. Soc. 127: 13466-13467   DOI   ScienceOn
26 Zhao, H., K. Chockalingam, and Z. Chen. 2002. Directed evolution of enzymes and pathways for industrial biocatalysis. Curr. Opin. Biotechnol. 13: 104-110   DOI   ScienceOn
27 Kim, S. Y., J. H. Sohn, Y. R. Pyun, and E. S. Choi. 2002. A cell surface display system using novel GPI-anchored proteins in Hansenula polymorpha. Yeast 19: 1153-1163   DOI   ScienceOn
28 Rotticci-Mulder, J. C., M. Gustavsson, M. Holmquist, K. Hult, and M. Martinelle. 2001. Expression in Pichia pastoris of Candida antarctica lipase B and lipase B fused to a cellulose-binding domain. Protein Expr. Purif. 21: 386-392   DOI   ScienceOn
29 Schmidt-Dannert, C. 1999. Recombinant microbial lipases for biotechnological applications. Bioorg. Med. Chem. 7: 2123-2130   DOI   ScienceOn
30 Suen, W. C., N. Zhang, L. Xiao, V. Madison, and A. Zaks. 2004. Improved activity and thermostability of Candida antarctica lipase B by DNA family shuffling. Protein Eng. Des. Sel. 17: 133-140   DOI   ScienceOn