Browse > Article

Improvement of Photoheterotrophic $H_2$ production of Rhodobacter sphaeroides by Removing Ammonium Ion Effect Exerted on Nitrogenase  

Jin, Sang-Hoon (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Kim, Mi-Sun (Biomass Research Team, Korea Institute of Energy Research)
Lee, Jeong-Kug (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Publication Information
KSBB Journal / v.20, no.6, 2005 , pp. 418-424 More about this Journal
Abstract
Photoheterotrophic evolution of molecular hydrogen by Rhodobacter sphaeroides is mediated by nitrogenase that is regulated transcriptionally and post-translationally by ammonium ion. Two PII-like proteins, GlnB and GlnK, play key roles in mediating inhibition and repression of nitrogenase in the presence of ammonium ion. glnB and glnK of R. sphaeroides were interrupted to abolish the ammonium ion effect controlling nitrogenase. Ammonium ion effect was still observed in mutant having an interruption in either glnB or glnK. However, the nitrogenase activity of glnB-glnK double mutant is not affected by ammonium ion. $H_2$ evolution was improved by increasing gene dosages of nitrogenase-coding genes, nifHDK in trans in glnB-glnK double mutant.
Keywords
Rhodobacter sphaeroides; nitrogenase; $H_2$ evolution; glnB; glnK;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hillmer, P. and H. Gest (1977), H, metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: Production and utilization of $H_2$ by resting cells, J. Bacteriol. 129, 732-739
2 Yakunin, A. F. and P. C. Hallenbeck (1998), Short-term regulation of nitrogenase activity by ${NH_4}^+$ in Rhodobacter capsulatus: multiple in vivo nitrogenase response to ${NH_4}^+$ addition, J. Bacteriol. 180, 6392-6395
3 Puskas, A., E. P. Greenberg, S. Kaplan, and A. L. Schaefer (1977), A Quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides, J. Bacteriol. 179, 7530-7537
4 Simon, R., U. Priefer, and A. Puhler (1983), A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria, Bio/Technology 1, 37-45
5 Sambrook, J., E. F. Fritsch, and T. Manitatis (1989), Molecular cloning: A laboratory manual, 2nd Ed. Cold spring Harbor laboratory, Cold spring Harbor laboratory Press, Cold Spring Harbor, NY, USA
6 Lenz, O., E. Schwartz, J. Demedde, M. Eitinger, and B. Friedrich (1994), The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation, J. Bacteriol. 176, 4385-4393   DOI
7 Liang, J. H., G. M. Nielsen, D. P. Lies, R. H. Burris, G. P. Roberts, and P. W. Ludden (1991), Mutations in the draT and draG genes of Rhodospirillum rubrum result in loss of regulation of nitrogenase by reversible ADP-ribosylation, J. Bacteriol. 173, 6903-9   DOI
8 Jeffke, T., N. H. Gropp, C. Kaiser, and C. Grzesik (1999), Mutational Analysis of the ebb operon ($CO_2$ assimilation) promoter of Ralstonia eutropha, J. Bacteriol. 181, 4374-4380
9 Dryden, S. C. and S. Kaplan (1990), Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides, Nucleic Acids Res. 18,7267-7277   DOI   ScienceOn
10 Ninfa, A. J. and M. R. Atkinson (2000), PH signal transduction proteins, Trends Microbiol. 8, 172-9   DOI   ScienceOn
11 Drepper, T., S. Gro$/beta$, A. F. Yakunin, P. C. Hallenbeck, B. Masepohl, and W. Klipp (2003), Role of GlnB and GinK in ammonium control of both nitrogenase systems in the phototrophic bacterium Rhodobacter capsulatus, Microbiology 149, 2203-2212   DOI   ScienceOn
12 Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger (1998), Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria, Gene. 70, 191-197   DOI   ScienceOn
13 Sistrorn, W. R. (1962), The kinetics of the synthesis of photopigments in Rhodopseudomonas sphaeroides, J. Gen. Microbiol. 28, 607-616   DOI   ScienceOn
14 Shah, V., N. Garg, and D. Madamwar (2001), Ultrastructure of the fresh water cyanobacterium Anabaena variabilis SPU 003 and its application for oxygen-free hydrogen production, FEMS Microbiol. Lett. 194(1), 71-75   DOI   ScienceOn
15 Anderson, J. A. and E. A. Dawes (1990), Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates, Microbiol. Rev. 54, 450-472
16 Kiley, P. J. and S. Kaplan (1988), Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides, Microbiol. Rev. 52, 50-69
17 Pawlowski A., K. U. Riedel, W. Klipp, P. Dreiskemper, S. Gross, H. Bierhoff, T. Drepper, and B. Masepohl (2003), Yeast two-hybrid studies on interaction of proteins involved in regulation of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus, J. Bacteriol. 185, 5240-7   DOI   ScienceOn
18 Peoples, O. P. and A. J. Sinskey (1990), Poly-$\beta$-hydroxybutyrate biosynthesis in Alcaigenes eutropus H16, J. BioI. Chem. 264, 15298-15303
19 Eraso, J. M. and S. Kaplan (1994), prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter spharoides, J Bacteriol. 176, 32-43   DOI
20 Lee I. H., Park J. Y., Kho D. H., Kim M. S., and J. K. Lee (2002), Reductive effect of $H_2$uptake and poly-beta-hydroxybutyrate formation on nitrogenase-mediated $H_2$ accumulation of Rhodobacter sphaeroides according to light intensity, Appl. Microbiol. Biotechnol. 60(1-2), 147-153   DOI   PUBMED