DOI QR코드

DOI QR Code

MECHANISM INDUCING GAS SUPPLY TO THE CENTRAL 10 PARSEC OF THE MILKY WAY

  • Morgan, Hannah L. (School of Space Research, Kyung Hee University) ;
  • Kim, Sungsoo S. (School of Space Research, Kyung Hee University) ;
  • Shin, Jihye (Korea Astronomy and Space Science Institute) ;
  • Chun, Kyungwon (School of Space Research, Kyung Hee University) ;
  • Park, So-Myoung (School of Space Research, Kyung Hee University) ;
  • Lee, Joowon (School of Space Research, Kyung Hee University) ;
  • Minh, Young Chol (Korea Astronomy and Space Science Institute)
  • Received : 2020.08.16
  • Accepted : 2020.11.03
  • Published : 2020.12.31

Abstract

We investigate the plausibility of mass return, from stellar mass loss processes within the central ~100 pc region of the Milky Way (the inner nuclear bulge), as a mass supply mechanism for the Circumnuclear Disk (CND). Gas in the Galactic disk migrates inward to the Galactic centre due to the asymmetric potential caused by the Galactic bar. The inward migration of gas stops and accumulates to form the central molecular zone (CMZ), at 100-200 pc from the Galactic center. It is commonly assumed that stars have formed in the CMZ throughout the lifetime of the Galaxy and have diffused inward to form a 'r-2 stellar cusp' within the inner nuclear bulge. We propose that the stars migrating inward from the CMZ supply gas to the inner nuclear bulge via stellar mass loss, resulting in the formation of a gas disk along the Galactic plane and subsequent inward migration down to the central 10 pc region (CND). We simulate the evolution of a gas distribution that initially follows the stellar distribution of the aforementioned stellar cusp, and illustrate the potential gas supply toward the CND.

Keywords

Acknowledgement

We are grateful to the anonymous reviewers for their helpful suggestions.

References

  1. Armijos-Abendano, J., Martin-Pintado, J., Requena-Torres, M. A., et al. 2019, Herschel Water Maps towards the Vicinity of the Black Hole Sgr A*, A&A, 624, 112
  2. Ballone, A., Mapelli, M., & Trani, A. A. 2019, A Common Origin for the Circumnuclear Disc and the Nearby Molecular Clouds in the Galactic Centre, MNRAS, 488, 5802 https://doi.org/10.1093/mnras/stz2147
  3. Boehle, A., Ghez, A. M., Schodel, R., et al. 2016, An Improved Distance and Mass Estimate for Sgr A* from a Multistar Orbit Analysis, ApJ, 830, 17 https://doi.org/10.3847/0004-637X/830/1/17
  4. Debattista, V. P. & Shen, J. 2007, Long-lived Double-barred Galaxies from Pseudobulges, ApJ, 654, L127 https://doi.org/10.1086/511264
  5. El-Zant, A. A. & Shlosman, I. 2003, Long-lived Doublebarred Galaxies: Critical Mass and Length Scales, ApJ, 595, L41 https://doi.org/10.1086/378974
  6. Erwin, P. 2004, Double-barred galaxies. I. A Catalog of Barred Galaxies with Stellar Secondary Bars and Inner Disks, A&A, 415, 941 https://doi.org/10.1051/0004-6361:20034408
  7. Gallego, S. G. & Cuadra, J. 2017, Satellite Infall and Mass Deposition on the Galactic Centre, MNRAS, 467, L41 https://doi.org/10.1093/mnrasl/slw254
  8. Gerhard, O. & Martinez-Valpuesta, I. 2012, The Inner Galactic Bulge: Evidence for a Nuclear Bar?, ApJL, 744, L8 https://doi.org/10.1088/2041-8205/744/1/L8
  9. Herrnstein, R. M. & Ho, P. T. P. 2005, The Nature of the Molecular Environment within 5 Parsecs of the Galactic Center, ApJ, 620, 287 https://doi.org/10.1086/426047
  10. Hsieh, P.-Y., Koch, P. M., Ho, P. T. P., et al. 2017, Molecular Gas Feeding the Circumnuclear Disk of the Galactic Center, ApJ, 847, 3 https://doi.org/10.3847/1538-4357/aa8329
  11. Hurley, J. R., Pols, O. R., & Tout, C. A. 2000, Comprehensive Analytic Formulae for Stellar Evolution as a Function of Mass and Metallicity, MNRAS, 315, 543 https://doi.org/10.1046/j.1365-8711.2000.03426.x
  12. Jacob, R., Schonberner, D., & Steffen, M. 2013, The Evolution of Planetary Nebulae. VIII. True Expansion Rates and Visibility Times, A&A, 558, A78 https://doi.org/10.1051/0004-6361/201321532
  13. Kim, S. S. & Morris, M. 2001, Spatial Diffusion of Stars in the Inner Galactic Bulge, ApJ, 554, 1059 https://doi.org/10.1086/321425
  14. Kroupa, P. 2002, The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems, Science, 295, 82 https://doi.org/10.1126/science.1067524
  15. Kruijssen, J. M. D., Longmore, S. N., Elmegreen, B. G., et al. 2014, What Controls Star Formation in the Central 500 pc of the Galaxy?, MNRAS, 440, 3370 https://doi.org/10.1093/mnras/stu494
  16. Laine, S., Shlosman, I., Knapen, J. H., & Peletier, R. F. 2002, Nested and Single Bars in Seyfert and Non-Seyfert Galaxies, ApJ, 567, 97 https://doi.org/10.1086/323964
  17. Lang, M., Holley-Bockelmann, K., Bogdanovic, T., et al. 2013, Can a Satellite Galaxy Merger Explain the Active Past of the Galactic Centre?, MNRAS, 430, 2574 https://doi.org/10.1093/mnras/sts638
  18. Launhardt, R., Zylka, R., & Mezger, P. G. 2002, The Nuclear Bulge of the Galaxy. III. Large-scale Physical Characteristics of Stars and Interstellar Matter, A&A, 384, 112 https://doi.org/10.1051/0004-6361:20020017
  19. Lu, X., Zhang, Q., Kauffmann, J., et al. 2017, The Molecular Gas Environment in the 20 km s-1 Cloud in the Central Molecular Zone, ApJ, 839, 18 https://doi.org/10.3847/1538-4357/aa689e
  20. Maciejewski, W. & Sparke, L. S. 2000, Orbits Supporting Bars within Bars, MNRAS, 313, 745 https://doi.org/10.1046/j.1365-8711.2000.03270.x
  21. Maciejewski, W. & Small, E. E. 2010, Orbital Support of Fast and Slow Inner Bars in Double-barred Galaxies, ApJ, 719, 622 https://doi.org/10.1088/0004-637X/719/1/622
  22. Mapelli, M. & Trani, A. A. 2016, Modelling the Formation of the Circumnuclear Ring in the Galactic Centre, A&A, 585, A161 https://doi.org/10.1051/0004-6361/201527195
  23. Martins, F., Genzel, R., Hillier, D. J., et al. 2007, Stellar and Wind Properties of Massive Stars in the Central Parsec of the Galaxy, A&A, 468, 233 https://doi.org/10.1051/0004-6361:20066688
  24. Merritt, D. 2010, The Distribution of Stars and Stellar Remnants at the Galactic Center, ApJ, 718, 739 https://doi.org/10.1088/0004-637X/718/2/739
  25. Minh, Y., C., Liu, H. B., Ho, P. T. P., et al. 2013, Green Bank Telescope Observations of the NH3 (3, 3) and (6, 6) Transitions toward Sagittarius A Molecular Clouds, ApJ, 773, 31 https://doi.org/10.1088/0004-637X/773/1/31
  26. Morris, M. & Serabyn, E., 1996, The Galactic Center Environment, ARA&A, 34, 645 https://doi.org/10.1146/annurev.astro.34.1.645
  27. Namekata, D., Habe, A., Matsui, H., & Saitoh, T. R. 2009, Mass Supply to Galactic Center due to Nested Bars in the Galaxy, ApJ, 691, 1525 https://doi.org/10.1088/0004-637X/691/2/1525
  28. Pfuhl, O., Fritz, T. K., Zilka, M., et al. 2011, The Star Formation History of the Milky Way's Nuclear Star Cluster, ApJ, 741, 108 https://doi.org/10.1088/0004-637X/741/2/108
  29. Rodriguez-Fernandez, N. J. & Combes, F. 2008, Gas Flow Models in the Milky Way Embedded Bars, A&A, 489, 115 https://doi.org/10.1051/0004-6361:200809644
  30. Schonrich, R., Aumer, M., & Sale, S. E. 2015, Kinematic Detection of the Galactic Nuclear Disk, ApJL, 812, L21 https://doi.org/10.1088/2041-8205/812/2/L21
  31. Shin, J., Kim, J., Kim, S. S., & Park, C. B. 2014, EUNHA: a New Cosmological Hydrodynamic Simulation Code, JKAS, 47, 87
  32. Shin, J., Kim, S. S., Baba, J., et al. 2017, Hydrodynamic Simulations of the Central Molecular Zone with a Realistic Galactic Potential, ApJ, 841, 74 https://doi.org/10.3847/1538-4357/aa7061
  33. Spaans, M. & Norman, C. A. 1997, Cosmological Evolution of Dwarf Galaxies: The Influence of Star Formation and the Multiphase Interstellar Medium, ApJ, 483, 87 https://doi.org/10.1086/304231
  34. Springel, V. 2005, The Cosmological Simulation Code GADGET-2, MNRAS, 364, 1105 https://doi.org/10.1111/j.1365-2966.2005.09655.x
  35. Tress, R. G., Sormani, M. C., Glover, S. C. O., et al. 2020, Simulations of the Milky Way's Central Molecular Zone - I. Gas Dynamics, MNRAS, 499, 4455 https://doi.org/10.1093/mnras/staa3120
  36. Wardle, M. & Yusef-Zadeh, F. 2008, On the Formation of Compact Stellar Disks around Sagittarius A*, ApJ, 683, L37 https://doi.org/10.1086/591471