Browse > Article
http://dx.doi.org/10.5352/JLS.2004.14.6.1028

Alu sequences and molecular features  

Park Eun-Sil (Division of Biological Sciences, College of Natural Sciences, Pusan National University)
Hong Kyung-Won (Division of Biological Sciences, College of Natural Sciences, Pusan National University)
Kim Heui-Soo (Division of Biological Sciences, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Life Science / v.14, no.6, 2004 , pp. 1028-1039 More about this Journal
Abstract
During the past 65 million years, Alu sequences have been amplified through RNA-polymerase IIIderived transcripts, and have reached the copy number of about 1.4 million in primate genomes. They are the largest family among mobile genetic elements in human genome and consist of ten percent of the human genome. Alu sequences are thought to be functionless genetically, but many researchers have proved new function and disease implication. Alu elements make the genome insertional mutation, Alu-mediated recombination events, and unexpected splicing site and change gene structures, protein sequences, splicing motifs and expression patterns. In this review, the structure and origin of Alu, consensus sequences of Alu subfamilies, evolution and distribution of Alu, and their related diseases were described. We also indicated new research direction of Alu elements in relation to evolution and disease.
Keywords
Alu; RNA-polymerase III; genetic mobile element; primate evolution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Le Goff, W., M. Guerin, M. J. Chapman and J. Thillet. 2003. A CYP7A promoter binding factor site and Alu repeat in the distal promoter region are implicated in regulation of human CETP gene expression. J. Lipid Res. 44, 902-910   DOI   ScienceOn
2 Lev-Maor, G., R. Sorek, N. Shomron and G. Ast. 2003. The birth of an alternatively spliced exon: 3' splice-site selection in Alu exons. Science 300, 1288-1291   DOI   ScienceOn
3 Li, L. and P. F. Bray. 1993. Homologous recombination among three intragene Alu sequences causes an inversion-deletion resulting in the hereditary bleeding disorder Glanzmann thrombasthenia. Am. J. Hum. Genet. 53, 140-149
4 Li, T. H. and C. W. Schmid. 2004. Alu's dimeric consensus sequence destabilizes its transcripts. Gene 324, 191-200   DOI   ScienceOn
5 Li, W. H., Z. Gu, H. Wang and A. Nekrutenko. 2001. Evolutionary analyses of the human genome. Nature 409, 847-849   DOI   ScienceOn
6 Makalowski, W., G. A. Mitchell and D. Lauda. 1994. Alu sequences in the coding regions of mRNA: A source of protein variability. Trends Genet. 10, 188-193   DOI   ScienceOn
7 Matera, A. G., U. Hellmann and C. W. Schmid. 1990. A transpositionally and transcriptionally competent Alu subfamily. Mol. Cell. Biol. 10, 5424-5432
8 Mathias, S. L., A. F. Scott, H. H. Jr. Kazazian, J. D. Boeke and A. Gabriel. 1991. Reverse transcriptase encoded by a human transposable element. Science 254, 1808-1810   DOI
9 Mazzarella, R. and D. Schlessinger. 1997. Duplication and distribution of repetitive elements and non-unique regions in the human genome. Gene 205, 29-38   DOI   ScienceOn
10 Jurka, J. and P. Klonowski. 1996. Integration of retroposable elements in mammals: selection of target sites. J. Mol. Evol. 43, 685-689   DOI   ScienceOn
11 Jurka, J. 2000. Repbase update: A database and an electronic journal of repetitive elements, Trends Genet. 16, 418-420   DOI   ScienceOn
12 Jurka, J., M. Krnjajic, V. V. Kapitonov, J. E. Stenger and O. Kokhanyy. 2002. Active Alu elements are passed primarily through paternal germlines. Theor. Popul. Biol. 61, 519-530   DOI   ScienceOn
13 Jurka, J., O. Kohany, A. Pavlicek, V. V. Kapitonov and M. V. Jurka. 2004. Duplication, coclustering, and selection of human Alu retrotransposons. Proc. Natl. Acad. Sci. U S A. 101, 268-272
14 Kapitonov, V. and J. Jurka. 1996. The age of Alu subfamilies. J. Mol. Evol. 42, 59-65   DOI
15 Knebelmann, B., L. Forestier, L. Drouot, S. Quinones, C. Chuet, F. Benessy, J. Saus and C. Antignac. 1995. Splice-mediated insertion of an Alu sequence in the COL4A3 mRNA causing autosomal recessive Alport syndrome. Hum. Mol. Genet. 4, 675-679   DOI   ScienceOn
16 Kolomietz, E., M. S. Meyn, A. Pandita and J. A. Squire. 2002. The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer 35, 97-112   DOI   ScienceOn
17 Korenberg, J. R. and M. C. Rykowski. 1988. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53, 391-400   DOI   ScienceOn
18 Grover, D., M. Mukerji, P. Bhatnagar, K. Kannan and S. K. Brahmachari. 2004. Alu repeat analysis in the complete human genome: trends and variations with respect to genomic composition. Bioinformatics 20, 813-817   DOI   ScienceOn
19 Lander, E. S., L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh et al. 2001 M. itial sequencing and analysistzHughe human genome. Nature 409, 860-921   DOI   ScienceOn
20 Ganguly, A., T. Dunbar, P. Chen, L. Godmilow and T. Ganguly. 2003. Exon skipping caused by an intronic insertion of a young Alu Yb9 element leads to severe hemophilia A. Hum. Genet. 113, 348-352   DOI   ScienceOn
21 Hilgard, P., T. Huang, A. W. Wolkoff and R. J. Stockert. 2002. Translated Alu sequence determines nuclear localization of a novel catalytic subunit of casein kinase 2. Am. J. Physiol. Cell Physiol. 283, C472-C483   DOI   ScienceOn
22 Houck, C. M., F. P. Rinehart and C. W. Schmid. 1979. A ubiquitous family of repeated DNA sequences in the human genome. J. Mol. Biol. 132, 289-306   DOI
23 Hutchinson, G. B., S. E. Andrew, H. McDonald, Y. P. Goldberg, R. Graham, J. M. Rommens and M. R. Hayden. 1993. An Alu element retroposition in two families with Huntington disease defines a new active Alu subfamily. Nucleic Acids Res. 21, 3379-3383   DOI   ScienceOn
24 International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. 2001. An assembly and annotation of the first draft sequence of the entire human genome that includes a comprehensive analysis of repeated DNA sequences. Nature 409, 860-921   DOI   ScienceOn
25 Chen, C. A., J. Gentles, J. Jurka and S. Karlin. 2002. Genes, pseudogenes, and Alu sequence organization across human chromosomes 21 and 22. Proc. Natl. Acad. Sci. USA 99, 2930-2935   DOI   ScienceOn
26 Jurka, J. and T. Smith. 1988. A fundamental division in the Alu family of repeated sequences. Proc. Natl. Acad. Sci. U S A. 85, 4775-4778   DOI   ScienceOn
27 Jurka, J. 1993. A new subfamily of recently retroposed Alu repeats. Nucleic Acids Res. 21, 2252   DOI   ScienceOn
28 Chae, J. J., Y. B. Park, S. H. Kim, S. S. Hong, G. J. Song, K. H. Han, Y. Namkoong, H. S. Kim and C. C. Lee, 1997. Two partial deletion mutations involving the same Alu sequence within intron 8 of the LDL receptor gene in Korean patients with familial hypercholesterolemia. Hum. Genet. 99, 155-163   DOI   ScienceOn
29 Dagan., T, R. Sorek, E. Sharon, G. Ast and D. Graur. 2004. AluGene: a database of Alu elements incorporated within protein-coding genes. Nucleic Acids Res. 32, D489-492
30 Deininger, P. L. and V. K. Slagel, 1988. Recently amplified Alu family members share a common parental Alu sequence. Mol. Cell. Biol. 8, 4566-4569
31 Deininger, P. L., M. A. Batzer , C. A. Hutchison and M. H. Edgell. 1992. Master genes in mammalian repetitive DNA amplification. Trends Genet. 8, 307-311   DOI   ScienceOn
32 Deininger, P. L. and M. A. Batzer. 1999. Alu repeats and human disease. Mol. Genet. Metab. 67, 183-193   DOI   ScienceOn
33 Feng, Q., J. V. Moran, H. H. Kazazian. Jr and J. D. Boeke. 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905-916   DOI   ScienceOn
34 Bernardi, G. 2001. Misunderstandings about isochores. Gene 276, 3-13   DOI   ScienceOn
35 Flint, J., J. Rochette, C. F. Craddoc, C. Dode, B. Vignes, S. W. Horsley, L. Kearney, V. J. Buckle, H. Ayyub and D. R. Higgs. 1996. Chromosomal stabilisation by a subtelomeric rearrangement involving two closely related Alu elements. Hum. Mol. Genet. 5, 1163-1169   DOI   ScienceOn
36 Batzer, M. A., P. L. Deininger, U. Hellmann-Blumberg, J. Jurka, D. Labuda, C. M. Rubin, C. W. Schmid, E. Zietkiewicz and E. Zuckerkandl. 1996. Standardized nomenclature for Alu repeats. J. Mol. Evol. 42, 3-6   DOI
37 Batzer, M. A. and P. L. Deininger. 2002. Alu repeats and human genomic diversity. Nat. Rev. Genet. 3, 370-379   DOI   ScienceOn
38 Boeke, J. D. 1997. LINEs and Alus the polyA connection. Nature Genet. 16, 6-7   DOI   ScienceOn
39 Roy-Engel, A. M., M. L. Carroll, M. El-Sawy, A. H. Salem, R. K. Garber, S. V. Nguyen, P. L. Deininger and M. A. Batzer. 2002. Non-traditional Alu evolution and primate genomic diversity. J. Mol. Biol. 316, 1033-1040   DOI   ScienceOn
40 Vidaud, D., M. Vidaud, B. R. Bahnak, V. Siguret, S. Sanchez, Y. Laurian, D. Meyer, M. Goosens and J. M. Lavergne. 1993. Haemophilia B due to a de novo insertion of a human-specific Alu subfamily member within the coding region of the factor IX gene. Eur. J. Hum. Genet. 1, 30-36
41 Roy-Engel, A. M., A. H. Salem, O. O. Oyeniran , P. L. Deininger, D. J. Hedges, G. E. Kilroy, M. A. Batzer and P. L. Deininger. 2002. Active Alu element 'A-tails': size does matter. Genome Res. 12, 1333-1344   DOI   ScienceOn
42 Sorek, R., G. Ast and D. Graur. 2002. Alu-containing exons are alternatively spliced. Genome Res. 12, 1060-1067   DOI   ScienceOn
43 Britten, R. J. 1994. Evidence that most human Alu sequences were inserted in a process that ceased about 30 million years ago. Proc. Natl. Acad. Sci. USA 91, 6148-6150   DOI   ScienceOn
44 Brookfield, J. F. 2001. Selection on Alu sequences? Curr. Biol. 11, 900-901
45 Salem, A. H., G. E. Kilroy, W. S. Watkins , L. B. Jorde and M. A. Batzer. 2003. Recently integrated Alu elements and human genomic diversity. Mol. Biol. Evol. 20, 1349-1361   DOI   ScienceOn
46 Schmid, C. W. 1996. Alu: structure, origin, evolution, significance and function of one- tenth of human DNA. Prog. Nucleic Acid Res. Mol. Biol. 53, 283-319   DOI
47 Singer, M. F. 1982. SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell 28, 433-434   DOI   ScienceOn
48 Ullu, E. and C. Tschudi. 1984. Alu sequences are processed 7SL RNA genes. Nature 312, 171-172   DOI   ScienceOn
49 Vansant, G. and W. F. Reynolds. 1995. The consensus sequence of a major Alu subfamily contains a functional retinoic acid response element. Proc. Natl. Acad. Sci. USA 92, 8229-8233   DOI   ScienceOn
50 Vervoort, R., R. Gitzelmann, W. Lissens and I. Liebaers. 1998. A mutation (IVS8+0.6kbdelTC) creating a new donor splice site activates a single nucleotide polymorphisms within Alus, as well as a cryptic exon in an Alu-element in intron 8 of the human b-glucuronidase gene. Hum. Genet. 103, 686-693
51 Mighell, A. J., A. F. Markham and P. A. Robinson. 1997. Alu sequences. FEBS Lett. 417, 1-5   DOI   ScienceOn
52 Pavlicek, A., K. Jabbari, J. Paces, V. Paces, J. V. Hejnar and G. Bernardi. 2001. Similar integration but different stability of Alus and LINEs in the human genome. Gene 276, 39-45   DOI   ScienceOn
53 Mitchell, G. A., D. Labuda, G. Fontaine, J. M. Saudubray, J. P. Bonnefont, S. Lyonnet, L. C. Brody, G. Steel, C. Obie and D. Valle. 1991. Splice-mediated insertion of an Alu sequence inactivates ornithine delta-aminotransferase: a role for Alu elements in human mutation. Proc. Natl. Acad. Sci. USA 88, 815-819.   DOI   ScienceOn
54 Nekrutenko, A. and W. H. Li. 2001. Transposable elements are found in a large number of human protein-coding genes. Trends Genet. 17, 619-621   DOI   ScienceOn
55 Norris, J., D. Fan, C. Aleman, J. R. Marks, P. A. Futreal, R. W. Wiseman, J. D. Iglehart, P. L. Deininger and D. P. McDonnell. 1995. Identification of a new subclass of Alu DNA repeats which can function as estrogen receptordependent transcriptional enhancers. J. Biol. Chem. 270, 22777-22782   DOI   ScienceOn
56 Ricci, V., S. Regis, M. Di Duca and M. Filocamo. 2003. An Alu mediated rearrangement as cause of exon skipping in Hunter disease. Hum. Genet. 112, 419-425
57 Roy, A. M., M. L. Carroll, S. V. Nguyen, A. H. Salem, M. Oldridge, A. O. M. Wilkie, M. A. Batzer and P. L. Deininger. 2000. Potential gene conversion and source genes for recently integrated Alu elements. Genome Res. 10, 1485-1495   DOI   ScienceOn
58 Roy-Engel, A. M., M. L. Carrol, E. Vogel, R. K. Garber, S. V. Nguyen, A. H. Salem, M. A. Batzer and P. L. Deininger. 2001. Alu insertion polymorphisms for the study of human genomic diversit. Genetics 159, 279-290