Improvement of Photoheterotrophic $H_2$ production of Rhodobacter sphaeroides by Removing Ammonium Ion Effect Exerted on Nitrogenase

Rhodobacter sphaeroides의 질소고정효소에 미치는 암모니움 이온 효과 제거를 통한 수소생성 증진

  • Jin, Sang-Hoon (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Kim, Mi-Sun (Biomass Research Team, Korea Institute of Energy Research) ;
  • Lee, Jeong-Kug (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • 진상훈 (서강대학교 생명과학과 바이오융합과정) ;
  • 김미선 (한국 에너지기술연구원 바이오매스 연구팀) ;
  • 이정국 (서강대학교 생명과학과 바이오융합과정)
  • Published : 2005.12.30

Abstract

Photoheterotrophic evolution of molecular hydrogen by Rhodobacter sphaeroides is mediated by nitrogenase that is regulated transcriptionally and post-translationally by ammonium ion. Two PII-like proteins, GlnB and GlnK, play key roles in mediating inhibition and repression of nitrogenase in the presence of ammonium ion. glnB and glnK of R. sphaeroides were interrupted to abolish the ammonium ion effect controlling nitrogenase. Ammonium ion effect was still observed in mutant having an interruption in either glnB or glnK. However, the nitrogenase activity of glnB-glnK double mutant is not affected by ammonium ion. $H_2$ evolution was improved by increasing gene dosages of nitrogenase-coding genes, nifHDK in trans in glnB-glnK double mutant.

Rhodobacter sphaeroides는 photoheterotrophic 조건에서 성장을 하면서 질소고정효소인 nitrogenase에 의해 수소를 발생시킨다. 이 nitrogenase는 ammonium ion이 존재할 때, PII 계열 단백질인 GlnB와 GlnK에 의해 negative regulation을 받게 된다. 본 연구에서는 glnB와 glnK 유전자를 interruption하여 수소생성의 증진을 꾀하였다. 그 결과, parental strain이나 glnB 혹은 glnK 유전자 하나만을 interruption 시켰을 경우, 암모니움 이온에 의해 nitrogenase 활성이 저해를 받고 있었으나, glnB, glnK 모두를 interruption 시켰을 때, 암모니움 이온에 의한 저해 효과가 줄어드는 것을 볼 수 있었다. 또한 이러한 glnB-glnK double mutant에 nifDK gene을 in trans로 넣어 nitrogenase의 dosage를 높였을 경우, 수소 생성이 약 30% 가량 증진되었다는 것을 볼 수 있었다.

Keywords

References

  1. Hillmer, P. and H. Gest (1977), H, metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: Production and utilization of $H_2$ by resting cells, J. Bacteriol. 129, 732-739
  2. Shah, V., N. Garg, and D. Madamwar (2001), Ultrastructure of the fresh water cyanobacterium Anabaena variabilis SPU 003 and its application for oxygen-free hydrogen production, FEMS Microbiol. Lett. 194(1), 71-75 https://doi.org/10.1111/j.1574-6968.2001.tb09448.x
  3. Liang, J. H., G. M. Nielsen, D. P. Lies, R. H. Burris, G. P. Roberts, and P. W. Ludden (1991), Mutations in the draT and draG genes of Rhodospirillum rubrum result in loss of regulation of nitrogenase by reversible ADP-ribosylation, J. Bacteriol. 173, 6903-9 https://doi.org/10.1128/jb.173.21.6903-6909.1991
  4. Yakunin, A. F. and P. C. Hallenbeck (1998), Short-term regulation of nitrogenase activity by ${NH_4}^+$ in Rhodobacter capsulatus: multiple in vivo nitrogenase response to ${NH_4}^+$ addition, J. Bacteriol. 180, 6392-6395
  5. Drepper, T., S. Gro$/beta$, A. F. Yakunin, P. C. Hallenbeck, B. Masepohl, and W. Klipp (2003), Role of GlnB and GinK in ammonium control of both nitrogenase systems in the phototrophic bacterium Rhodobacter capsulatus, Microbiology 149, 2203-2212 https://doi.org/10.1099/mic.0.26235-0
  6. Ninfa, A. J. and M. R. Atkinson (2000), PH signal transduction proteins, Trends Microbiol. 8, 172-9 https://doi.org/10.1016/S0966-842X(00)01709-1
  7. Pawlowski A., K. U. Riedel, W. Klipp, P. Dreiskemper, S. Gross, H. Bierhoff, T. Drepper, and B. Masepohl (2003), Yeast two-hybrid studies on interaction of proteins involved in regulation of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus, J. Bacteriol. 185, 5240-7 https://doi.org/10.1128/JB.185.17.5240-5247.2003
  8. Anderson, J. A. and E. A. Dawes (1990), Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates, Microbiol. Rev. 54, 450-472
  9. Kiley, P. J. and S. Kaplan (1988), Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides, Microbiol. Rev. 52, 50-69
  10. Peoples, O. P. and A. J. Sinskey (1990), Poly-$\beta$-hydroxybutyrate biosynthesis in Alcaigenes eutropus H16, J. BioI. Chem. 264, 15298-15303
  11. Sistrorn, W. R. (1962), The kinetics of the synthesis of photopigments in Rhodopseudomonas sphaeroides, J. Gen. Microbiol. 28, 607-616 https://doi.org/10.1099/00221287-28-4-607
  12. Lee I. H., Park J. Y., Kho D. H., Kim M. S., and J. K. Lee (2002), Reductive effect of $H_2$uptake and poly-beta-hydroxybutyrate formation on nitrogenase-mediated $H_2$ accumulation of Rhodobacter sphaeroides according to light intensity, Appl. Microbiol. Biotechnol. 60(1-2), 147-153 https://doi.org/10.1007/s00253-002-1097-2
  13. Puskas, A., E. P. Greenberg, S. Kaplan, and A. L. Schaefer (1977), A Quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides, J. Bacteriol. 179, 7530-7537
  14. Sambrook, J., E. F. Fritsch, and T. Manitatis (1989), Molecular cloning: A laboratory manual, 2nd Ed. Cold spring Harbor laboratory, Cold spring Harbor laboratory Press, Cold Spring Harbor, NY, USA
  15. Jeffke, T., N. H. Gropp, C. Kaiser, and C. Grzesik (1999), Mutational Analysis of the ebb operon ($CO_2$ assimilation) promoter of Ralstonia eutropha, J. Bacteriol. 181, 4374-4380
  16. Lenz, O., E. Schwartz, J. Demedde, M. Eitinger, and B. Friedrich (1994), The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation, J. Bacteriol. 176, 4385-4393 https://doi.org/10.1128/jb.176.14.4385-4393.1994
  17. Eraso, J. M. and S. Kaplan (1994), prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter spharoides, J Bacteriol. 176, 32-43 https://doi.org/10.1128/jb.176.1.32-43.1994
  18. Simon, R., U. Priefer, and A. Puhler (1983), A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria, Bio/Technology 1, 37-45
  19. Dryden, S. C. and S. Kaplan (1990), Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides, Nucleic Acids Res. 18,7267-7277 https://doi.org/10.1093/nar/18.24.7267
  20. Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger (1998), Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria, Gene. 70, 191-197 https://doi.org/10.1016/0378-1119(88)90117-5