DOI QR코드

DOI QR Code

Atomistic simulations of defect accumulation and evolution in heavily irradiated titanium for nuclear-powered spacecraft

  • Hai Huang (Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University) ;
  • Xiaoting Yuan (Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University) ;
  • Longjingrui Ma (Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University) ;
  • Jiwei Lin (Shanghai Nuclear Engineering Research & Design Institute Co.Ltd) ;
  • Guopeng Zhang (Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University) ;
  • Bin Cai (Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University)
  • Received : 2022.10.20
  • Accepted : 2023.02.24
  • Published : 2023.06.25

Abstract

Titanium alloys are expected to become one of the candidate materials for nuclear-powered spacecraft due to their excellent overall performance. Nevertheless, atomistic mechanisms of the defect accumulation and evolution of the materials due to long-term exposure to irradiation remain scarcely understood by far. Here we investigate the heavy irradiation damage in a-titanium with a dose as high as 4.0 canonical displacements per atom (cDPA) using atomistic simulations of Frenkel pair accumulation. Results show that the content of surviving defects increases sharply before 0.04 cDPA and then decreases slowly to stabilize, exhibiting a strong correlation with the system energy. Under the current simulation conditions, the defect clustering fraction may be not directly dependent on the irradiation dose. Compared to vacancies, interstitials are more likely to form clusters, which may further cause the formation of 1/3<1210> interstitial-type dislocation loops extended along the (1010) plane. This study provides an important insight into the understanding of the irradiation damage behaviors for titanium.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 12105249), the Key Project for Science and Technology Development of Henan Province (Grant No. 212102210195), the Innovation Team Support Program for Cooperation of Young Talents & Enterprises in Zhengzhou University (Grant No. 32320368), the Henan Province Postdoctoral Science Foundation (Grant No. 202102012), the Research and Practice Project of Education and Teaching Reform in Zhengzhou University (Grant No. 2022ZZUJG173), the Undergraduate Training Program for Innovation and Entrepreneurship in Zhengzhou University (Grant No. 2022cxcy362), the Large Power Material Irradiation Experimental System (LP-MIES) in Dalian University of Technology, and the National Supercomputing Center in Zhengzhou.

References

  1. T.J. Cole, J. Bassler, S. Cooper, et al., The challenges of designing a lightweight spacecraft structure for landing on the lunar surface, Acta Astronaut. 71 (2012) 83-91, https://doi.org/10.1016/j.actaastro.2011.08.003.
  2. S. Aftergood, D.W. Hafemeister, O.F. Prilutsky, et al., Nuclear power in space, Sci. Am. 264 (1991) 42-49, https://doi.org/10.1038/scientificamerican0691-42.
  3. E. Demirkutlu, S. Cakmakci, K. Celik, et al., Overview of nuclear energy and power supply units for deep space and planetary science missions, IEEE 8th Inter. Conf. Recent Adv. Space Technol. (2017) 331-336, https://doi.org/10.1109/RAST.2017.8002995.
  4. Z. Li, H. Zhang, Z. Huang, et al., Characteristics and optimation of heat pipe radiator for space nuclear propulsion spacecraft, Prog. Nucl. Energy 150 (2022), 104307, https://doi.org/10.1016/j.pnucene.2022.104307.
  5. S.U.D. Khan, A.V. Nakhabov, Nuclear reactor technology development and utilization, in: G. Velidi, U. Guven (Eds.), Nuclear-powered Space Reactor, Woodhead Publishing, Amsterdam, 2020, pp. 407-431, https://doi.org/10.1016/B978-0-12-818483-7.00013-5.
  6. S.J. Zinkle, G.S. Was, Materials challenges in nuclear energy, Acta Mater. 61 (2013) 735-758, https://doi.org/10.1016/j.actamat.2012.11.004.
  7. S.J. Zinkle, K.A. Terranib, L.L. Snead, Motivation for utilizing new high-performance advanced materials in nuclear energy systems, Curr. Opin. Solid St. M. 20 (2016) 401-410, https://doi.org/10.1016/j.cossms.2016.10.004.
  8. G.R. Odette, S.J. Zinkle, Corrosion issues in current and next-generation nuclear reactors, in: G.S. Was, T.R. Allen (Eds.), Structural Alloys for Nuclear Energy Applications, Elsevier, Amsterdam, 2019, pp. 211-246, https://doi.org/10.1016/B978-0-12-397046-6.00006-X.
  9. L.S. Novikov, V.N. Mileev, E.N. Voronina, et al., Radiation effects on spacecraft materials, J. Surf. Invest. X-Ray+ 3 (2009) 199-214, https://doi.org/10.1134/S1027451009020062.
  10. D.L. McDanels, T.T. Serafini, J.A. DiCarlo, Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications, J. Mater. Energy Syst. 8 (1986) 80-91, https://doi.org/10.1007/BF02833463.
  11. M. Das, S. Sahu, D.R. Parhi, Composite materials and their damage detection using AI techniques for aerospace application: a brief review, Mater. Today Proc. 44 (2021) 955-960, https://doi.org/10.1016/j.matpr.2020.11.005.
  12. D. Sziroczak, H. Smith, A review of design issues specific to hypersonic flight vehicles, Prog. Aero. Sci. 84 (2016) 1-28, https://doi.org/10.1016/j.paerosci.2016.04.001.
  13. M. Naito, H. Kitamura, M. Koike, et al., Applicability of composite materials for space radiation shielding of spacecraft, Life Sci. Space Res. 31 (2021) 71-79, https://doi.org/10.1016/j.lssr.2021.08.004.
  14. L.W. Townsend, Implications of the space radiation environment for human exploration in deep space, Radiat. Protect. Dosim. 115 (2005) 44-50, https://doi.org/10.1093/rpd/nci141.
  15. S. Pagliarini, L. Benites, M. Martins, et al., Evaluating architectural, redundancy, and implementation strategies for radiation hardening of FinFET integrated circuits, IEEE Trans. Nucl. Sci. 68 (2021) 1045-1053, https://doi.org/10.1109/TNS.2021.3070643.
  16. S. Bhowmik, R. Benedictus, J.A. Poulis, et al., High-performance nanoadhesive bonding of titanium for aerospace and space applications, Int. J. Adhesion Adhes. 29 (2009) 259-267, https://doi.org/10.1016/j.ijadhadh.2008.07.002.
  17. V.A.R. Henriques, Titanium production for aerospace applications, J. Aero. Technol. Manag. 1 (2009) 7-17, https://doi.org/10.5028/jatm.2009.01010717.
  18. P. Singh, H. Pungotra, N.S. Kalsi, On the characteristics of titanium alloys for the aircraft applications, Mater. Today Proc. 4 (2017) 8971-8982, https://doi.org/10.1016/j.matpr.2017.07.249.
  19. M.S. Lee, A.R. Jo, S.K. Hwang, et al., The role of strain rate and texture in the deformation of commercially pure titanium at cryogenic temperature, Mater. Sci. Eng. 827 (2021), 142042, https://doi.org/10.1016/j.msea.2021.142042.
  20. B.S. Rodchenkov, A.V. Kozlov, Y.G. Kuznetsov, et al., Irradiation behaviour of titanium alloys for ITER blanket modules flexible attachment, J. Nucl. Mater. 307 (2002) 421-425, https://doi.org/10.1016/S0022-3115(02)01011-5.
  21. J. Tao, X. Guo, Z. Huang, et al., Preparation and characterization of enamel coating on pure titanium as a hydrogen penetration barrier, Nucl. Eng. Des. 259 (2013) 65-70, https://doi.org/10.1016/j.nucengdes.2013.02.041.
  22. Q. Bignon, F. Martin, Q. Auzoux, et al., Oxide formation on titanium alloys in primary water of nuclear pressurised water reactor, Corrosion Sci. 150 (2019) 32-41, https://doi.org/10.1016/j.corsci.2019.01.020.
  23. Y. Hamamoto, T. Uchikoshi, K. Tanabe, Comprehensive modeling of hydrogen transport and accumulation in titanium and zirconium, Nucl. Mater. Energy 23 (2020), 100751, https://doi.org/10.1016/j.nme.2020.100751.
  24. M. Griffiths, D. Faulkner, R.C. Styles, Neutron damage in α-titanium, J. Nucl. Mater. 119 (1983) 189-207, https://doi.org/10.1016/0022-3115(83)90196-4.
  25. S.J. Wooding, D.J. Bacon, W.J. Phythian, A computer simulation study of displacement cascades in α-titanium, Philos. Mag. A 72 (1995) 1261-1279, https://doi.org/10.1080/01418619508236254.
  26. S. Tahtinen, P. Moilanen, B.N. Singh, Effect of displacement dose and irradiation temperature on tensile and fracture toughness properties of titanium alloys, J. Nucl. Mater. 367 (2007) 627-632, https://doi.org/10.1016/j.jnucmat.2007.03.042.
  27. S. Sadi, A. Paulenova, W.D. Loveland, et al., Microstructure damage of titanium films by irradiation with fission fragments, Nucl. Instrum. Methods B 269 (2011) 3230-3232, https://doi.org/10.1016/j.nimb.2011.04.093.
  28. H. Zhu, M. Qin, R. Aughterson, et al., The formation and accumulation of radiation-induced defects and the role of lamellar interfaces in radiation damage of titanium aluminum alloy irradiated with Kr-ions at room temperature, Acta Mater. 195 (2020) 654-667, https://doi.org/10.1016/j.actamat.2020.06.009.
  29. C.R. Lear, J.G. Gigax, O.El Atwani, et al., Effects of helium cavity size and morphology on the strength of pure titanium, Scripta Mater. 212 (2022), 114531, https://doi.org/10.1016/j.scriptamat.2022.114531.
  30. K. Nordlund, F. Djurabekova, Multiscale modelling of irradiation in nanostructures, J. Comput. Electron. 13 (2014) 122-141, https://doi.org/10.1007/s10825-013-0542-z.
  31. Y. Zhang, S. Zhao, W.J. Weber, et al., Atomic-level heterogeneity and defect dynamics in concentrated solids-olution alloys, Curr. Opin. Solid St. M. 21 (2017) 221-237, https://doi.org/10.1016/j.cossms.2017.02.002.
  32. J. Peng, S. Cui, Y. Tian, et al., Effects of grain boundary on irradiation-induced zero-dimensional defects in an irradiated copper, Appl. Math. Mech. 43 (2022) 233-246, https://doi.org/10.1007/s10483-022-2803-5.
  33. Y. Jin, H. Huang, Y. Zhong, et al., Role of interface on irradiation damage of Cu-diamond composites using classical molecular dynamics simulations, Ceram. Int. 48 (2022) 16813-16824, https://doi.org/10.1016/j.ceramint.2022.02.232.
  34. M. Christensen, W. Wolf, C. Freeman, et al., Diffusion of point defects, nucleation of dislocation loops, and effect of hydrogen in hcp-Zr: Ab initio and classical simulations, J. Nucl. Mater. 460 (2015) 82-96, https://doi.org/10.1016/j.jnucmat.2015.02.013.
  35. P.M. Derlet, S.L. Dudarev, Microscopic structure of a heavily irradiated material, Phys. Rev. Mater. 4 (2020), 023605, https://doi.org/10.1103/PhysRevMaterials.4.023605.
  36. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1e19, https://doi.org/10.1006/jcph.1995.1039.
  37. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Model. Simulat. Mater. Sci. Eng. 18 (2009), 015012, https://doi.org/10.1088/0965-0393/18/1/015012.
  38. X.W. Zhou, R.A. Johnson, H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B 69 (2014), 144113, https://doi.org/10.1103/PhysRevB.69.144113.
  39. C. Liu, Y. Li, T. Shi, et al., Oxygen defects stabilize the crystal structure of MgAl2O4 spinel under irradiation, J. Nucl. Mater. 527 (2019), 151830, https://doi.org/10.1016/j.jnucmat.2019.151830.
  40. C. Maxwell, J. Pencer, E. Torres, Atomistic simulation study of clustering and evolution of irradiation-induced defects in zirconium, J. Nucl. Mater. 531 (2020), 151979, https://doi.org/10.1016/j.jnucmat.2019.151979.
  41. J. Tian, Q. Feng, J. Zheng, X. Liu, W. Zhou, Radiation damage buildup and basal vacancy cluster formation in hcp zirconium: a molecular dynamics study, J. Nucl. Mater. 551 (2021), 152920, https://doi.org/10.1016/j.jnucmat.2021.152920.
  42. H. Xu, From Electronic Structure of Point Defects to Physical Properties of Complex Materials Using Atomic-Level Simulations, University of Florida, Gainesville, 2010.
  43. J. Tian, H. Wang, Q. Feng, et al., Heavy radiation damage in alpha zirconium at cryogenic temperature: a computational study, J. Nucl. Mater. 555 (2021), 153159, https://doi.org/10.1016/j.jnucmat.2021.153159.
  44. X.M. Bai, A.F. Voter, R.G. Hoagland, et al., Efficient annealing of radiation damage near grain boundaries via interstitial emission, Science 327 (2010) 1631-1634, https://doi.org/10.1126/science.1183723.
  45. H. Huang, X. Tang, K. Xie, et al., Enhanced self-healing of irradiation defects near a Ni-graphene interface by damaged graphene: insights from atomistic modeling, J. Phys. Chem. Solid. 151 (2021), 109909, https://doi.org/10.1016/j.jpcs.2020.109909.
  46. R. Voskoboinikov, Statistics of primary radiation defects in pure nickel, Nucl. Instrum. Methods B 478 (2020) 201-204, https://doi.org/10.1016/j.nimb.2020.06.034.
  47. F. Gao, D.J. Bacon, L.M. Howe, et al., Temperature-dependence of defect creation and clustering by displacement cascades in α-zirconium, J. Nucl. Mater. 294 (2001) 288-298, https://doi.org/10.1016/S0022-3115(01)00483-4.
  48. B.D. Wirth, G.R. Odette, D. Maroudas, G.E. Lucas, Energetics of formation and migration of self-interstitials and self-interstitial clusters in α-iron, J. Nucl. Mater. 244 (1997) 185-194, https://doi.org/10.1016/S0022-3115(96)00736-2.
  49. C.H. Woo, Defect accumulation behaviour in hcp metals and alloys, J. Nucl. Mater. 276 (2000) 90-103, https://doi.org/10.1016/S0022-3115(99)00172-5.
  50. N. de Diego, Y.N. Osetsky, D.J. Bacon, Mobility of interstitial clusters in alpha-zirconium, Metall. Mater. Trans. A 33 (2002) 783-789, https://doi.org/10.1007/s11661-002-0145-y.
  51. Y.N. Osetsky, D.J. Bacon, A. Serra, B.N. Singh, S.I. Golubov, Stability and mobility of defect clusters and dislocation loops in metals, J. Nucl. Mater. 276 (2000) 65-77, https://doi.org/10.1016/S0022-3115(99)00170-1.
  52. I. Chant, K.L. Murty, Structural materials issues for the next generation fission reactors, JOM 62 (2010) 67-74, https://doi.org/10.1007/s11837-010-0142-3.
  53. X. Xiao, Fundamental mechanisms for irradiation-hardening and embrittlement: a review, Metals 9 (2019) 1132, https://doi.org/10.3390/met9101132.
  54. H. Yuya, K. Yabuuchi, A. Kimura, Radiation embrittlement of clad-HAZ of RPV of a decommissioned BWR plant, J. Nucl. Mater. 557 (2021), 153300, https://doi.org/10.1016/j.jnucmat.2021.153300.