• 제목/요약/키워드: Molecular Genotyping

검색결과 157건 처리시간 0.03초

Genome wide association study on feed conversion ratio using imputed sequence data in chickens

  • Wang, Jiaying;Yuan, Xiaolong;Ye, Shaopan;Huang, Shuwen;He, Yingting;Zhang, Hao;Li, Jiaqi;Zhang, Xiquan;Zhang, Zhe
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권4호
    • /
    • pp.494-500
    • /
    • 2019
  • Objective: Feed consumption contributes a large percentage for total production costs in the poultry industry. Detecting genes associated with feeding traits will be of benefit to improve our understanding of the molecular determinants for feed efficiency. The objective of this study was to identify candidate genes associated with feed conversion ratio (FCR) via genomewide association study (GWAS) using sequence data imputed from single nucleotide polymorphism (SNP) panel in a Chinese indigenous chicken population. Methods: A total of 435 Chinese indigenous chickens were phenotyped for FCR and were genotyped using a 600K SNP genotyping array. Twenty-four birds were selected for sequencing, and the 600K SNP panel data were imputed to whole sequence data with the 24 birds as the reference. The GWAS were performed with GEMMA software. Results: After quality control, 8,626,020 SNPs were used for sequence based GWAS, in which ten significant genomic regions were detected to be associated with FCR. Ten candidate genes, ubiquitin specific peptidase 44, leukotriene A4 hydrolase, ETS transcription factor, R-spondin 2, inhibitor of apoptosis protein 3, sosondowah ankyrin repeat domain family member D, calmodulin regulated spectrin associated protein family member 2, zinc finger and BTB domain containing 41, potassium sodium-activated channel subfamily T member 2, and member of RAS oncogene family were annotated. Several of them were within or near the reported FCR quantitative trait loci, and others were newly reported. Conclusion: Results from this study provide valuable prior information on chicken genomic breeding programs, and potentially improve our understanding of the molecular mechanism for feeding traits.

Genotype Profiles for the Quantitative Trait Related to Milk Composition in Bulls Used for Artificial Insemination in India

  • Mukhopadhyaya, P.N.;Mehta, H.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권3호
    • /
    • pp.326-329
    • /
    • 2002
  • A population of exotic Holstein Friesian, Jersey, their crossbreds and the indigenous Murrah breed of buffalo bulls (n=486), used in artificial insemination breeding program were screened for the allelic distribution of the ${\kappa}$-casein and ${\beta}$-lactoglobulin genotypes. The preferred "B" allele frequency was highest in Murrah buffalo bulls followed by Jersey and Holstein Friesian. The increase in this particular allele frequency in the Holstein Friesian crossbred bulls was more when compared to their Jersey counterparts. Hardy-Weinberg's equilibrium was maintained albeit with some deviations, which was higher in crossbreds than in purebreds. The feasibility of using such large-scale molecular diagnostic tools in the field and their significance with regards to the dairy economy is discussed.

Genetic Relationships among Multiple Strains of the Genus Tetraselmis Based on Partial 18S rDNA Sequences

  • Lee, Hye-Jung;Hur, Sung-Bum
    • ALGAE
    • /
    • 제24권4호
    • /
    • pp.205-212
    • /
    • 2009
  • Molecular genetic tools are widely used to learn more about the identical characterization of obscure microalgal strains. At the Korea Marine Microalgae Culture Center (KMMCC), the authors deduced the genetic relationship of 41 strains of the genus Tetraselmis by analysing a small subunit ribosomal DNA (18S rDNA) sequences. Forty-one strains were seperated into five groups, which showed over a 98-99% similarity to Tetraselmis striata or Tetraselmis sp. Tsbre. Also, 13 strains among them had an identical genotype to Tetraselmis striata while 5 strains had with Tetraselmis sp. Tsbre, respectively. The mean size of each strain generally showed the tendency of different variation according to the groups.

Phenytoin Toxicity in a Korean Patient Homozygous for $CYP2C9^{\ast}3$

  • Lee, Soo-Youn;Kim, Jong-Won;Kim, Jong-Soo
    • Molecular & Cellular Toxicology
    • /
    • 제2권4호
    • /
    • pp.262-265
    • /
    • 2006
  • We report a case of phenytoin toxicity due to impaired drug metabolism in a patient homozygous for $CYP2C9^{\ast}3$. A 46-year-old woman was taking phenytoin to prevent postoperative seizures. She attained high serum phenytoin levels at the standard doses (300 mg/day) and developed symptoms of phenytoin toxicity including blurred vision, nausea and headache. The patient was treated with reduced doses of phenytoin and then phenytoin therapy was finally discontinued. Genotyping for CYP2C9 revealed that this patient had a homozygous genotype, $CYP2C9^{\ast}3/^{\ast}3$. This is the first Korean case of phenytoin toxicity with homozygous $CYP2C9^{\ast}3$. This case suggests the clinical usefulness of pharmacogenetic testing for individualized dosage adjustments of phenytoin.

Advances towards Controlling Meiotic Recombination for Plant Breeding

  • Choi, Kyuha
    • Molecules and Cells
    • /
    • 제40권11호
    • /
    • pp.814-822
    • /
    • 2017
  • Meiotic homologous recombination generates new combinations of preexisting genetic variation and is a crucial process in plant breeding. Within the last decade, our understanding of plant meiotic recombination and genome diversity has advanced considerably. Innovation in DNA sequencing technology has led to the exploration of high-resolution genetic and epigenetic information in plant genomes, which has helped to accelerate plant breeding practices via high-throughput genotyping, and linkage and association mapping. In addition, great advances toward understanding the genetic and epigenetic control mechanisms of meiotic recombination have enabled the expansion of breeding programs and the unlocking of genetic diversity that can be used for crop improvement. This review highlights the recent literature on plant meiotic recombination and discusses the translation of this knowledge to the manipulation of meiotic recombination frequency and location with regards to crop plant breeding.

Animal Breeding: What Does the Future Hold?

  • Eisen, E.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권3호
    • /
    • pp.453-460
    • /
    • 2007
  • An overview of developments important in the future of animal breeding is discussed. Examples from the application of quantitative genetic principles to selection in chickens and mice are given. Lessons to be learned from these species are that selection for production traits in livestock must also consider selection for reproduction and other fitness-related traits and inbreeding should be minimized. Short-term selection benefits of best linear unbiased predictor methodology must be weighed against long-term risks of increased rate of inbreeding. Different options have been developed to minimize inbreeding rates while maximizing selection response. Development of molecular genetic methods to search for quantitative trait loci provides the opportunity for incorporating marker-assisted selection and introgression as new tools for increasing efficiency of genetic improvement. Theoretical and computer simulation studies indicate that these methods hold great promise once genotyping costs are reduced to make the technology economically feasible. Cloning and transgenesis are not likely to contribute significantly to genetic improvement of livestock production in the near future.

Fast and Precise: How to Measure Meiotic Crossovers in Arabidopsis

  • Kim, Heejin;Choi, Kyuha
    • Molecules and Cells
    • /
    • 제45권5호
    • /
    • pp.273-283
    • /
    • 2022
  • During meiosis, homologous chromosomes (homologs) pair and undergo genetic recombination via assembly and disassembly of the synaptonemal complex. Meiotic recombination is initiated by excess formation of DNA double-strand breaks (DSBs), among which a subset are repaired by reciprocal genetic exchange, called crossovers (COs). COs generate genetic variations across generations, profoundly affecting genetic diversity and breeding. At least one CO between homologs is essential for the first meiotic chromosome segregation, but generally only one and fewer than three inter-homolog COs occur in plants. CO frequency and distribution are biased along chromosomes, suppressed in centromeres, and controlled by pro-CO, anti-CO, and epigenetic factors. Accurate and high-throughput detection of COs is important for our understanding of CO formation and chromosome behavior. Here, we review advanced approaches that enable precise measurement of the location, frequency, and genomic landscapes of COs in plants, with a focus on Arabidopsis thaliana.

감귤 분자육종을 위한 분자표지 개발 현황 및 전망 (Current status and prospects of molecular marker development for systematic breeding program in citrus)

  • 김호방;김재준;오창재;윤수현;송관정
    • Journal of Plant Biotechnology
    • /
    • 제43권3호
    • /
    • pp.261-271
    • /
    • 2016
  • 세계적인 과수작물로서의 경제적 중요성에도 불구하고, 감귤 생산은 주로 자연교잡 실생이나 눈 돌연변이로부터의 선발 또는 단순 품종 도입 등을 통해 이루어지고 있는 실정이다. 긴 유년기, 다배성, 자가불화합성과 같은 감귤 고유의 식물학적 특성, 주요 형질들(병저항성, 수량성, 품질 등)의 QTL에 의한 조절 등은 전통 육종을 통한 우수 품종의 개발을 어렵게 하는 요인이다. 지구 온난화에 의한 생산 여건의 급격한 변화, 소비자 요구 다양화 등은 고품질 감귤의 조기 선발과 안정적 생산, 품종 다양화, 육종 비용 절감 등을 위한 체계적인 감귤 분자육종 프로그램의 도입을 요구하고 있다. 동위효소를 이용한 최초의 감귤 연관지도 작성이 이루어진 이래, 다양한 분자표지를 이용한 연관지도 작성, 생물(CTV, CiLV, ABS, 선충] 및 비생물적(염분, 저온) 스트레스, 아포믹시스, 다배성, 과실착색(카로티노이드, 안토시아닌), 무종자, 웅성불임, 신맛 적음, 생식, 형태(나무, 잎, 꽃, 열매 등), 과실 품질, 종자수, 수량성, 조기 착과 등과 연관된 분자표지 발굴, QTL 맵핑 등이 이루어졌다. CTV 저항성과 적육(안토시아닌 축적) 형질에 대해서는 유전자 클로닝이 이루어졌고, 교배 육종 효율 증대 및 비용 절감을 위해 교잡배와 주심배를 구분하기 위한 다수의 simple sequence repeat (SSR) 분자표지가 개발되었다. 최근, 스위트오렌지와 '클레멘타인' 만다린에 대한 고품질의 표준 유전체가 완성되어 유전체 기반 감귤 분자육종을 위한 토대가 마련되었다. 표준 유전체 정보를 토대로 대규모 분자표지(SNP, SSR, InDel) 기반의 표준 연관 및 물리지도 작성, 비교 유전체 지도 작성, gene annotation, 전사체 분석 등이 활발히 이루어지고 있다. 감귤 유전자원 및 핵심집단에 대해 표준 유전체 기반 비교 유전체 분석, GBS (genotyping-by-sequencing), GWAS (genome wide association study) 등을 통해 감귤의 다양한 형질과 연관된 분자마커 발굴 및 개발, 유용/변이 유전자 클로닝 등에 관한 연구가 가속화될 것으로 전망된다. 또한 표적 유전체 교정 및 VIGS (virus-induced gene silencing) 기술도 유전자 마커의 검증을 비롯한 감귤 분자육종 프로그램에 활발히 이용될 것이다.

Quantitative Trait Loci Associated with Functional Stay-Green SNU-SG1 in Rice

  • Yoo, Soo-Cheul;Cho, Sung-Hwan;Zhang, Haitao;Paik, Hyo-Chung;Lee, Chung-Hee;Li, Jinjie;Yoo, Jeong-Hoon;Lee, Byun-Woo;Koh, Hee-Jong;Seo, Hak Soo;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • 제24권1호
    • /
    • pp.83-94
    • /
    • 2007
  • During monocarpic senescence in higher plants, functional stay-green delays leaf yellowing, maintaining photosynthetic competence, whereas nonfunctional stay-green retains leaf greenness without sustaining photosynthetic activity. Thus, functional stay-green is considered a beneficial trait that can increase grain yield in cereal crops. A stay-green japonica rice 'SNU-SG1' had a good seed-setting rate and grain yield, indicating the presence of a functional stay-green genotype. SNU-SG1 was crossed with two regular cultivars to determine the inheritance mode and identify major QTLs conferring stay-green in SNU-SG1. For QTL analysis, linkage maps with 100 and 116 DNA marker loci were constructed using selective genotyping with $F_2$ and RIL (recombinant inbred line) populations, respectively. Molecular marker-based QTL analyses with both populations revealed that the functional stay-green phenotype of SNU-SG1 is regulated by several major QTLs accounting for a large portion of the genetic variation. Three main-effect QTLs located on chromosomes 7 and 9 were detected in both populations and a number of epistatic-effect QTLs were also found. The amount of variation explained by several digenic interactions was larger than that explained by main-effect QTLs. Two main-effect QTLs on chromosome 9 can be considered the target loci that most influence the functional stay-green in SNU-SG1. The functional stay-green QTLs may help develop low-input high-yielding rice cultivars by QTL-marker-assisted breeding with SNU-SG1.

황색포도구균과 대장균의 기준형별 결정에 있어서 Infrequent Restriction Site Polymerase Chain Reaction과 Pulsed-Field Gel Electrophoresis의 변별력 비교 (Comparison of Infrequent Restriction Site-Polymerase Chain Reaction and Pulsed-Field Gel Electrophoresis for Molecular Typing of Staphylococcus aureus and Escherichia coli)

  • 신완식;김태규;최정현;이동건;최희백;유진홍;김종현;강진한;민우성
    • 대한미생물학회지
    • /
    • 제35권4호
    • /
    • pp.289-297
    • /
    • 2000
  • Background: Staphylococcus aureus (s. aureus) and Escherichia coli (E. coli) are major pathogens in community and hospital. And they sometimes cause the outbreak in hospital in the immunocompromised patients. Pulsed-field gel electrophoresis (PFGE) has been regarded as a standard method for genotyping in epidemiologic studies, but it is laborious and time-consuming. Infrequent restriction site-polymerase chain reaction (IRS-PCR), a new genotyping methods, was performed to compare the applicability with PFGE. Methods: We performed PFGE and IRS-PCR on S. aurues (n=120) and E. coli (n=117) which were collected clinically in 4 different hospitals. We assessed each method in terms of discriminatory power, quality, and efficiency. Results: In E. coli, the discriminatory power of IRS-PCR was $46.7{\sim}86.7%$, and that of PFGE was $88.9{\sim}96.7%$ according to hospital. But in S. aurues, the discriminatory power of IRS-PCR was $20{\sim}56.7%$, and that of PFGE was $40{\sim}90%$ according to hospital. The typablity and reproducibility of IRS-PCR were 100% of each. PFGE needed four days to complete the procedure, but IRS-PCR could be performed within one day, IRS-PCR showed better resolution than PFGE. Conclusion: In case of gram negative bacteria (like E. coli), IRS-PCR could be a reliable alternative for epidemiologic typing due to better efficiency and comparable discriminatory power. But in the case of gram positive bacteria (like S. aureus), IRS-PCR does not seem to be suitable for the strain-to-strain differentiation. More trials and changes of restriction enzymes or primers could reveal the efficacy of IRS-PCR in the field of molecular typing.

  • PDF