DOI QR코드

DOI QR Code

Fast and Precise: How to Measure Meiotic Crossovers in Arabidopsis

  • Kim, Heejin (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Choi, Kyuha (Department of Life Sciences, Pohang University of Science and Technology)
  • Received : 2021.12.29
  • Accepted : 2022.03.04
  • Published : 2022.05.31

Abstract

During meiosis, homologous chromosomes (homologs) pair and undergo genetic recombination via assembly and disassembly of the synaptonemal complex. Meiotic recombination is initiated by excess formation of DNA double-strand breaks (DSBs), among which a subset are repaired by reciprocal genetic exchange, called crossovers (COs). COs generate genetic variations across generations, profoundly affecting genetic diversity and breeding. At least one CO between homologs is essential for the first meiotic chromosome segregation, but generally only one and fewer than three inter-homolog COs occur in plants. CO frequency and distribution are biased along chromosomes, suppressed in centromeres, and controlled by pro-CO, anti-CO, and epigenetic factors. Accurate and high-throughput detection of COs is important for our understanding of CO formation and chromosome behavior. Here, we review advanced approaches that enable precise measurement of the location, frequency, and genomic landscapes of COs in plants, with a focus on Arabidopsis thaliana.

Keywords

Acknowledgement

We thank Choi lab members for their critical reading and helpful comments. This work was funded by the Suh Kyungbae Foundation (SUHF) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education NRF-2020R1A2C2007763.

References

  1. Albert, P.S., Zhang, T., Semrau, K., Rouillard, J.M., Kao, Y.H., Wang, C.J.R., Danilova, T.V., Jiang, J., and Birchler, J.A. (2019). Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proc. Natl. Acad. Sci. U. S. A. 116, 1679-1685. https://doi.org/10.1073/pnas.1813957116
  2. Albini, S.M., Jones, G.H., and Wallace, B.M.N. (1984). A method for preparing two-dimensional surface-spreads of synaptonemal complexes from plant meiocytes for light and electron microscopy. Exp. Cell Res. 152, 280-285. https://doi.org/10.1016/0014-4827(84)90255-6
  3. Armstrong, S. (2013). Spreading and fluorescence in situ hybridization of male and female meiocyte chromosomes from Arabidopsis thaliana for cytogenetical analysis. Methods Mol. Biol. 990, 3-11. https://doi.org/10.1007/978-1-62703-333-6_1
  4. Armstrong, S.J., Caryl, A.P., Jones, G.H., and Franklin, F.C.H. (2002). Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. J. Cell Sci. 115, 3645-3655. https://doi.org/10.1242/jcs.00048
  5. Armstrong, S.J., Franklin, F.C.H., and Jones, G.H. (2001). Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J. Cell Sci. 114, 4207-4217. https://doi.org/10.1242/jcs.114.23.4207
  6. Barra, L., Termolino, P., Aiese Cigliano, R., Cremona, G., Paparo, R., Lanzillo, C., Consiglio, M.F., and Conicella, C. (2021). Meiocyte isolation by INTACT and meiotic transcriptome analysis in Arabidopsis. Front. Plant Sci. 12, 638051. https://doi.org/10.3389/fpls.2021.638051
  7. Barton, N.H. and Charlesworth, B. (1998). Why sex and recombination? Science 281, 1986-1990. https://doi.org/10.1126/science.281.5385.1986
  8. Berchowitz, L.E. and Copenhaver, G.P. (2008). Fluorescent Arabidopsis tetrads: a visual assay for quickly developing large crossover and crossover interference data sets. Nat. Protoc. 3, 41-50. https://doi.org/10.1038/nprot.2007.491
  9. Berchowitz, L.E. and Copenhaver, G.P. (2010). Genetic interference: don't stand so close to me. Curr. Genomics 11, 91-102. https://doi.org/10.2174/138920210790886835
  10. Blackwell, A.R., Dluzewska, J., Szymanska-Lejman, M., Desjardins, S., Tock, A.J., Kbiri, N., Lambing, C., Lawrence, E.J., Bieluszewski, T., Rowan, B., et al. (2020). MSH 2 shapes the meiotic crossover landscape in relation to interhomolog polymorphism in Arabidopsis. EMBO J. 39, e104858. https://doi.org/10.15252/embj.2020104858
  11. Capilla-Perez, L., Durand, S., Hurel, A., Lian, Q., Chambon, A., Taochy, C., Solier, V., Grelon, M., and Mercier, R. (2021). The synaptonemal complex imposes crossover interference and heterochiasmy in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 118, e2023613118. https://doi.org/10.1073/pnas.2023613118
  12. Chelysheva, L., Diallo, S., Vezon, D., Gendrot, G., Vrielynck, N., Belcram, K., Rocques, N., Marquez-Lema, A., Bhatt, A.M., Horlow, C., et al. (2005). AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J. Cell Sci. 118, 4621-4632. https://doi.org/10.1242/jcs.02583
  13. Chelysheva, L., Grandont, L., Vrielynck, N., le Guin, S., Mercier, R., and Grelon, M. (2010). An easy protocol for studying chromatin and recombination protein dynamics during Arabidopsis thaliana meiosis: immunodetection of cohesins, histones and MLH1. Cytogenet. Genome Res. 129, 143-153. https://doi.org/10.1159/000314096
  14. Chelysheva, L., Vezon, D., Chambon, A., Gendrot, G., Pereira, L., Lemhemdi, A., Vrielynck, N., Le Guin, S., Novatchkova, M., and Grelon, M. (2012). The Arabidopsis HEI10 is a new ZMM protein related to Zip3. PLoS Genet. 8, e1002799. https://doi.org/10.1371/journal.pgen.1002799
  15. Chen, C., Farmer, A.D., Langley, R.J., Mudge, J., Crow, J.A., May, G.D., Huntley, J., Smith, A.G., and Retzel, E.F. (2010). Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes. BMC Plant Biol. 10, 280. https://doi.org/10.1186/1471-2229-10-280
  16. Choi, K. (2017). Advances towards controlling meiotic recombination for plant breeding. Mol. Cells 40, 814-822. https://doi.org/10.14348/MOLCELLS.2017.0171
  17. Choi, K. and Henderson, I.R. (2015). Meiotic recombination hotspots - a comparative view. Plant J. 83, 52-61. https://doi.org/10.1111/tpj.12870
  18. Choi, K., Reinhard, C., Serra, H., Ziolkowski, P.A., Underwood, C.J., Zhao, X., Hardcastle, T.J., Yelina, N.E., Griffin, C., Jackson, M., et al. (2016). Recombination rate heterogeneity within Arabidopsis disease resistance genes. PLoS Genet. 12, e1006179. https://doi.org/10.1371/journal.pgen.1006179
  19. Choi, K., Yelina, N.E., Serra, H., and Henderson, I.R. (2017). Quantification and sequencing of crossover recombinant molecules from Arabidopsis pollen DNA. Methods Mol. Biol. 1551, 23-57. https://doi.org/10.1007/978-1-4939-6750-6_2
  20. Choi, K., Zhao, X., Kelly, K.A., Venn, O., Higgins, J.D., Yelina, N.E., Hardcastle, T.J., Ziolkowski, P.A., Copenhaver, G.P., Franklin, F.C.H., et al. (2013). Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat. Genet. 45, 1327-1336. https://doi.org/10.1038/ng.2766
  21. Cole, F., Kauppi, L., Lange, J., Roig, I., Wang, R., Keeney, S., and Jasin, M. (2012). Homeostatic control of recombination is implemented progressively in mouse meiosis. Nat. Cell Biol. 14, 424-430. https://doi.org/10.1038/ncb2451
  22. Copenhaver, G.P., Browne, W.E., and Preuss, D. (1998). Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads. Proc. Natl. Acad. Sci. U. S. A. 95, 247-252. https://doi.org/10.1073/pnas.95.1.247
  23. Cremer, T., Lichter, P., Borden, J., Ward, D., and Manuelidis, L. (1988). Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum. Genet. 80, 235-246. https://doi.org/10.1007/BF01790091
  24. Crismani, W., Girard, C., Froger, N., Pradillo, M., Santos, J.L., Chelysheva, L., Copenhaver, G.P., Horlow, C., and Mercier, R. (2012). FANCM limits meiotic crossovers. Science 336, 1588-1590. https://doi.org/10.1126/science.1220381
  25. De Muyt, A., Pereira, L., Vezon, D., Chelysheva, L., Gendrot, G., Chambon, A., Laine-Choinard, S., Pelletier, G., Mercier, R., Nogue, F., et al. (2009). A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana. PLoS Genet. 5, e1000654. https://doi.org/10.1371/journal.pgen.1000654
  26. do Vale Martins, L., Yu, F., Zhao, H., Dennison, T., Lauter, N., Wang, H., Deng, Z., Thompson, A., Semrau, K., Rouillard, J.M., et al. (2019). Meiotic crossovers characterized by haplotype-specific chromosome painting in maize. Nat. Commun. 10, 4604. https://doi.org/10.1038/s41467-019-12646-z
  27. Drouaud, J., Camilleri, C., Bourguignon, P.Y., Canaguier, A., Berard, A., Vezon, D., Giancola, S., Brunel, D., Colot, V., Prum, B., et al. (2006). Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination "hot spots". Genome Res. 16, 106-114. https://doi.org/10.1101/gr.4319006
  28. Drouaud, J., Khademian, H., Giraut, L., Zanni, V., Bellalou, S., Henderson, I.R., Falque, M., and Mezard, C. (2013). Contrasted patterns of crossover and non-crossover at Arabidopsis thaliana meiotic recombination hotspots. PLoS Genet. 9, e1003922. https://doi.org/10.1371/journal.pgen.1003922
  29. Fernandes, J.B., Seguela-Arnaud, M., Larcheveque, C., Lloyd, A.H., and Mercier, R. (2018). Unleashing meiotic crossovers in hybrid plants. Proc. Natl. Acad. Sci. U. S. A. 115, 2431-2436. https://doi.org/10.1073/pnas.1713078114
  30. France, M.G., Enderle, J., Rohrig, S., Puchta, H., Franklin, F.C.H., and Higgins, J.D. (2021). ZYP1 is required for obligate cross-over formation and cross-over interference in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 118, e2021671118. https://doi.org/10.1073/pnas.2021671118
  31. Francis, K.E., Lam, S.Y., Harrison, B.D., Bey, A.L., Berchowitz, L.E., and Copenhaver, G.P. (2007). Pollen tetrad-based visual assay for meiotic recombination in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 104, 3913-3918. https://doi.org/10.1073/pnas.0608936104
  32. Gao, C. (2021). Genome engineering for crop improvement and future agriculture. Cell 184, 1621-1635. https://doi.org/10.1016/j.cell.2021.01.005
  33. Girard, C., Chelysheva, L., Choinard, S., Froger, N., Macaisne, N., Lehmemdi, A., Mazel, J., Crismani, W., and Mercier, R. (2015). AAA-ATPase FIDGETINLIKE 1 and helicase FANCM antagonize meiotic crossovers by distinct mechanisms. PLoS Genet. 11, e1005369. https://doi.org/10.1371/journal.pgen.1005369
  34. Giraut, L., Falque, M., Drouaud, J., Pereira, L., Martin, O.C., and Mezard, C. (2011). Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. PLoS Genet. 7, e1002354. https://doi.org/10.1371/journal.pgen.1002354
  35. Hurel, A., Phillips, D., Vrielynck, N., Mezard, C., Grelon, M., and Christophorou, N. (2018). A cytological approach to studying meiotic recombination and chromosome dynamics in Arabidopsis thaliana male meiocytes in three dimensions. Plant J. 95, 385-396. https://doi.org/10.1111/tpj.13942
  36. Kim, J. and Choi, K. (2019). Signaling-mediated meiotic recombination in plants. Curr. Opin. Plant Biol. 51, 44-50. https://doi.org/10.1016/j.pbi.2019.04.001
  37. Kim, J., Park, J., Kim, H., Son, N., Lambing, C., Kim, E.J., Kim, J., Byun, D., Lee, Y., Park, Y.M., et al. (2021). HEAT SHOCK FACTOR BINDING PROTEIN limits meiotic crossovers by repressing HEI10 transcription. BioRxiv, https://doi.org/10.1101/2021.10.17.464477
  38. Kurzbauer, M.T., Pradillo, M., Kerzendorfer, C., Sims, J., Ladurner, R., Oliver, C., Janisiw, M.P., Mosiolek, M., Schweizer, D., Copenhaver, G.P., et al. (2018). Arabidopsis thaliana FANCD2 promotes meiotic crossover formation. Plant Cell 30, 415-428. https://doi.org/10.1105/tpc.17.00745
  39. Kurzbauer, M.T., Uanschou, C., Chen, D., and Schlogelhofer, P. (2012). The recombinases DMC1 and RAD51 are functionally and spatially separated during meiosis in Arabidopsis. Plant Cell 24, 2058-2070. https://doi.org/10.1105/tpc.112.098459
  40. Lam, I. and Keeney, S. (2014). Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb. Perspect. Biol. 7, a016634. https://doi.org/10.1101/cshperspect.a016634
  41. Lambing, C., Kuo, P.C., Tock, A.J., Topp, S.D., and Henderson, I.R. (2020). ASY1 acts as a dosage-dependent antagonist of telomere-led recombination and mediates crossover interference in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 117, 13647-13658. https://doi.org/10.1073/pnas.1921055117
  42. Lawrence, E.J., Gao, H., Tock, A.J., Lambing, C., Blackwell, A.R., Feng, X., and Henderson, I.R. (2019). Natural variation in TBP-ASSOCIATED FACTOR 4b controls meiotic crossover and germline transcription in Arabidopsis. Curr. Biol. 29, 2676-2686.e3. https://doi.org/10.1016/j.cub.2019.06.084
  43. Lim, E.C., Kim, J., Park, J., Kim, E.J., Kim, J., Park, Y.M., Cho, H.S., Byun, D., Henderson, I.R., Copenhaver, G.P., et al. (2020). DeepTetrad: high-throughput image analysis of meiotic tetrads by deep learning in Arabidopsis thaliana. Plant J. 101, 473-483. https://doi.org/10.1111/tpj.14543
  44. Lloyd, A., Morgan, C., Franklin, F., and Bomblies, K. (2018). Plasticity of meiotic recombination rates in response to temperature in Arabidopsis. Genetics 208, 1409-1420. https://doi.org/10.1534/genetics.117.300588
  45. Lopez, E., Pradillo, M., Oliver, C., Romero, C., Cunado, N., and Santos, J.L. (2012). Looking for natural variation in chiasma frequency in Arabidopsis thaliana. J. Exp. Bot. 63, 887-894. https://doi.org/10.1093/jxb/err319
  46. Luo, C., Li, X., Zhang, Q., and Yan, J. (2019). Single gametophyte sequencing reveals that crossover events differ between sexes in maize. Nat. Commun. 10, 785. https://doi.org/10.1038/s41467-019-08786-x
  47. Mair, A. and Bergmann, D.C. (2022). Advances in enzyme-mediated proximity labeling and its potential for plant research. Plant Physiol. 188, 756-768. https://doi.org/10.1093/plphys/kiab479
  48. Martini, E., Diaz, R.L., Hunter, N., and Keeney, S. (2006). Crossover homeostasis in yeast meiosis. Cell 126, 285-295. https://doi.org/10.1016/j.cell.2006.05.044
  49. Melamed-Bessudo, C., Yehuda, E., Stuitje, A.R., and Levy, A.A. (2005). A new seed-based assay for meiotic recombination in Arabidopsis thaliana. Plant J. 43, 458-466. https://doi.org/10.1111/j.1365-313X.2005.02466.x
  50. Mercier, R., Mezard, C., Jenczewski, E., Macaisne, N., and Grelon, M. (2015). The molecular biology of meiosis in plants. Annu. Rev. Plant Biol. 66, 297-327. https://doi.org/10.1146/annurev-arplant-050213-035923
  51. Mieulet, D., Aubert, G., Bres, C., Klein, A., Droc, G., Vieille, E., Rond-Coissieux, C., Sanchez, M., Dalmais, M., Mauxion, J.P., et al. (2018). Unleashing meiotic crossovers in crops. Nat. Plants 4, 1010-1016. https://doi.org/10.1038/s41477-018-0311-x
  52. Modliszewski, J.L., Wang, H., Albright, A.R., Lewis, S.M., Bennett, A.R., Huang, J., Ma, H., Wang, Y., and Copenhaver, G.P. (2018). Elevated temperature increases meiotic crossover frequency via the interfering (Type I) pathway in Arabidopsis thaliana. PLoS Genet. 14, e1007384. https://doi.org/10.1371/journal.pgen.1007384
  53. Moran, E.S., Armstrong, S.J., Santos, J.L., Franklin, F.C.H., and Jones, G.H. (2001). Chiasma formation in Arabidopsis thaliana accession Wassileskija and in two meiotic mutants. Chromosome Res. 9, 121-128. https://doi.org/10.1023/A:1009278902994
  54. Morgan, C. and Wegel, E. (2020). Cytological characterization of Arabidopsis arenosa polyploids by SIM. Methods Mol. Biol. 2061, 37-46. https://doi.org/10.1007/978-1-4939-9818-0_4
  55. Morgan, C., Fozard, J.A., Hartley, M., Henderson, I.R., Bomblies, K., and Howard, M. (2021). Diffusion-mediated HEI10 coarsening can explain meiotic crossover positioning in Arabidopsis. Nat. Commun. 12, 4674. https://doi.org/10.1038/s41467-021-24827-w
  56. Nageswaran, D.C., Kim, J., Lambing, C., Kim, J., Park, J., Kim, E.J., Cho, H.S., Kim, H., Byun, D., Park, Y.M., et al. (2021). HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis. Nat. Plants 7, 452-467. https://doi.org/10.1038/s41477-021-00889-y
  57. Naish, M., Alonge, M., Wlodzimierz, P., Tock, A.J., Abramson, B.W., Schmucker, A., Mandakova, T., Jamge, B., Lambing, C., Kuo, P., et al. (2021). The genetic and epigenetic landscape of the Arabidopsis centromeres. Science 374, eabi7489. https://doi.org/10.1126/science.abi7489
  58. Oh, Y. and Kim, S.G. (2021). RPS5A promoter-driven Cas9 produces heritable virus-induced genome editing in Nicotiana attenuata. Mol. Cells 44, 911-919. https://doi.org/10.14348/molcells.2021.0237
  59. Pinkel, D., Landegent, J., Collins, C., Fuscoe, J., Segraves, R., Lucas, J., and Gray, J. (1988). Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc. Natl. Acad. Sci. U. S. A. 85, 9138-9142. https://doi.org/10.1073/pnas.85.23.9138
  60. Prusicki, M.A., Keizer, E.M., Van Rosmalen, R.P., Komaki, S., Seifert, F., Muller, K., Wijnker, E., Fleck, C., and Schnittger, A. (2019). Live cell imaging of meiosis in arabidopsis thaliana. Elife 8, e42834. https://doi.org/10.7554/elife.42834
  61. Ross, K.J., Fransz, P., and Jones, G.H. (1996). A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res. 4, 507-516. https://doi.org/10.1007/BF02261778
  62. Rosu, S., Libuda, D.E., and Villeneuve, A.M. (2011). Robust crossover assurance and regulated interhomolog access maintain meiotic crossover number. Science 334, 1286-1289. https://doi.org/10.1126/science.1212424
  63. Rowan, B.A., Patel, V., Weigel, D., and Schneeberger, K. (2015). Rapid and inexpensive whole-genome genotyping-by-sequencing for crossover localization and fine-scale genetic mapping. G3 (Bethesda) 5, 385-398. https://doi.org/10.1534/g3.114.016501
  64. Saini, R., Singh, A.K., Hyde, G.J., and Baskar, R. (2020). Levels of heterochiasmy during arabidopsis development as reported by fluorescent tagged lines. G3 (Bethesda) 10, 2103-2110. https://doi.org/10.1534/g3.120.401296
  65. Salome, P.A., Bomblies, K., Fitz, J., Laitinen, R.A.E., Warthmann, N., Yant, L., and Weigel, D. (2012). The recombination landscape in Arabidopsis thaliana F2 populations. Heredity (Edinb.) 108, 447-455. https://doi.org/10.1038/hdy.2011.95
  66. Sanchez-Moran, E., Armstrong, S.J., Santos, J.L., Franklin, F.C.H., and Jones, G.H. (2002). Variation in chiasma frequency among eight accessions of Arabidopsis thaliana. Genetics 162, 1415-1422. https://doi.org/10.1093/genetics/162.3.1415
  67. Seguela-Arnaud, M., Choinard, S., Larcheveque, C., Girard, C., Froger, N., Crismani, W., and Mercier, R. (2017). RMI1 and TOP3α limit meiotic CO formation through their C-terminal domains. Nucleic Acids Res. 45, 1860-1871.
  68. Seguela-Arnaud, M., Crismani, W., Larcheveque, C., Mazel, J., Froger, N., Choinard, S., Lemhemdi, A., Macaisne, N., Van Leene, J., Gevaert, K., et al. (2015). Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM. Proc. Natl. Acad. Sci. U. S. A. 112, 4713-4718. https://doi.org/10.1073/pnas.1423107112
  69. Serra, H., Choi, K., Zhao, X., Blackwell, A.R., Kim, J., and Henderson, I.R. (2018b). Interhomolog polymorphism shapes meiotic crossover within the Arabidopsis RAC1 and RPP13 disease resistance genes. PLoS Genet. 14, e1007843. https://doi.org/10.1371/journal.pgen.1007843
  70. Serra, H., Lambing, C., Griffin, C.H., Topp, S.D., Nageswaran, D.C., Underwood, C.J., Ziolkowski, P.A., Seguela-Arnaud, M., Fernandes, J.B., Mercier, R., et al. (2018a). Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis. Proc. Natl. Acad. Sci. U. S. A. 115, 2437-2442. https://doi.org/10.1073/pnas.1713071115
  71. Shilo, S., Melamed-Bessudo, C., Dorone, Y., Barkai, N., and Levy, A.A. (2015). DNA crossover motifs associated with epigenetic modifications delineate open chromatin regions in Arabidopsis. Plant Cell 27, 2427-2436. https://doi.org/10.1105/tpc.15.00391
  72. Sidhu, G.K., Fang, C., Olson, M.A., Falque, M., Martin, O.C., and Pawlowski, W.P. (2015). Recombination patterns in maize reveal limits to crossover homeostasis. Proc. Natl. Acad. Sci. U. S. A. 112, 15982-15987. https://doi.org/10.1073/pnas.1514265112
  73. Sims, J., Changbin, C., Schlogelhofer, P., and Kurzbauer, M.T. (2020b). Targeted analysis of chromatin events (TACE). Methods Mol. Biol. 2061, 47-58. https://doi.org/10.1007/978-1-4939-9818-0_5
  74. Sims, J., Chouaref, J., and Schlogelhofer, P. (2020a). Whole-mount immuno-FISH on Arabidopsis meiocytes (WhoMI-FISH). Methods Mol. Biol. 2061, 59-66. https://doi.org/10.1007/978-1-4939-9818-0_6
  75. Sims, J., Schlogelhofer, P., and Kurzbauer, M.T. (2021). From microscopy to nanoscopy: defining an Arabidopsis thaliana meiotic atlas at the nanometer scale. Front. Plant Sci. 12, 672914. https://doi.org/10.3389/fpls.2021.672914
  76. Sun, H., Rowan, B.A., Flood, P.J., Brandt, R., Fuss, J., Hancock, A.M., Michelmore, R.W., Huettel, B., and Schneeberger, K. (2019). Linked-read sequencing of gametes allows efficient genome-wide analysis of meiotic recombination. Nat. Commun. 10, 4310. https://doi.org/10.1038/s41467-019-12209-2
  77. Taagen, E., Bogdanove, A.J., and Sorrells, M.E. (2020). Counting on crossovers: controlled recombination for plant breeding. Trends Plant Sci. 25, 455-465. https://doi.org/10.1016/j.tplants.2019.12.017
  78. Underwood, C.J., Choi, K., Lambing, C., Zhao, X., Serra, H., Borges, F., Simorowski, J., Ernst, E., Jacob, Y., Henderson, I.R., et al. (2018). Epigenetic activation of meiotic recombination near Arabidopsis thaliana centromeres via loss of H3K9me2 and non-CG DNA methylation. Genome Res. 28, 519-531. https://doi.org/10.1101/gr.227116.117
  79. Ur, S.N. and Corbett, K.D. (2021). Architecture and dynamics of meiotic chromosomes. Annu. Rev. Genet. 55, 497-526. https://doi.org/10.1146/annurev-genet-071719-020235
  80. Villeneuve, A.M. and Hillers, K.J. (2001). Whence meiosis? Cell 106, 647-650. https://doi.org/10.1016/S0092-8674(01)00500-1
  81. Wang, Y., Zhao, Y., Bollas, A., Wang, Y., and Au, K.F. (2021). Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348-1365. https://doi.org/10.1038/s41587-021-01108-x
  82. Wijnker, E., Velikkakam James, G., Ding, J., Becker, F., Klasen, J.R., Rawat, V., Rowan, B.A., de Jong, D.F., de Snoo, C.B., Zapata, L., et al. (2013). The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana. Elife 2, e01426. https://doi.org/10.7554/elife.01426
  83. Wu, G., Rossidivito, G., Hu, T., Berlyand, Y., and Poethig, R.S. (2015). Traffic lines: new tools for genetic analysis in Arabidopsis thaliana. Genetics 200, 35-45. https://doi.org/10.1534/genetics.114.173435
  84. Xue, M., Wang, J., Jiang, L., Wang, M., Wolfe, S., Pawlowski, W.P., Wang, Y., and He, Y. (2018). The number of meiotic double-strand breaks influencecrossover distribution in arabidopsis[open]. Plant Cell 30, 2628-2638. https://doi.org/10.1105/tpc.18.00531
  85. Yelina, N.E., Choi, K., Chelysheva, L., Macaulay, M., de Snoo, B., Wijnker, E., Miller, N., Drouaud, J., Grelon, M., Copenhaver, G.P., et al. (2012). Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLoS Genet. 8, e1002844. https://doi.org/10.1371/journal.pgen.1002844
  86. Yelina, N.E., Gonzalez-Jorge, S., Hirsz, D., Yang, Z., and Henderson, I.R. (2021). CRISPR targeting of MEIOTIC-TOPOISOMERASE VIB-dCas9 to a recombination hotspot is insufficient to increase crossover frequency in Arabidopsis. BioRxiv, https://doi.org/10.1101/2021.02.01.429210
  87. Yelina, N.E., Lambing, C., Hardcastle, T.J., Zhao, X., Santos, B., and Henderson, I.R. (2015). DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis. Genes Dev. 29, 2183-2202. https://doi.org/10.1101/gad.270876.115
  88. Yelina, N.E., Ziolkowski, P.A., Miller, N., Zhao, X., Kelly, K.A., Munoz, D.F., Mann, D.J., Copenhaver, G.P., and Henderson, I.R. (2013). High-throughput analysis of meiotic crossover frequency and interference via flow cytometry of fluorescent pollen in Arabidopsis thaliana. Nat. Protoc. 8, 2119-2134. https://doi.org/10.1038/nprot.2013.131
  89. Yokoo, R., Zawadzki, K.A., Nabeshima, K., Drake, M., Arur, S., and Villeneuve, A.M. (2012). COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers. Cell 149, 75-87. https://doi.org/10.1016/j.cell.2012.01.052
  90. Zhao, Q., Wang, Y., Bi, Y., Zhai, Y., Yu, X., Cheng, C., Wang, P., Li, J., Lou, Q., and Chen, J. (2019). Oligo-painting and GISH reveal meiotic chromosome biases and increased meiotic stability in synthetic allotetraploid Cucumis × hytivus with dysploid parental karyotypes. BMC Plant Biol. 19, 471. https://doi.org/10.1186/s12870-019-2060-z
  91. Zhu, L., Fernandez-Jimenez, N., Szymanska-Lejman, M., Pele, A., Underwood, C.J., Serra, H., Lambing, C., Dluzewska, J., Bieluszewski, T., Pradillo, M., et al. (2021). Natural variation identifies SNI1, the SMC5/6 component, as a modifier of meiotic crossover in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 118, e2021970118. https://doi.org/10.1073/pnas.2021970118
  92. Zickler, D. and Kleckner, N. (1999). Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603-754. https://doi.org/10.1146/annurev.genet.33.1.603
  93. Ziolkowski, P.A., Berchowitz, L.E., Lambing, C., Yelina, N.E., Zhao, X., Kelly, K.A., Choi, K., Ziolkowska, L., June, V., Sanchez-Moran, E., et al. (2015). Juxtaposition of heterozygous and homozygous regions causes reciprocal crossover remodelling via interference during Arabidopsis meiosis. Elife 4, e03708. https://doi.org/10.7554/elife.03708
  94. Ziolkowski, P.A., Underwood, C.J., Lambing, C., Martinez-Garcia, M., Lawrence, E.J., Ziolkowska, L., Griffin, C., Choi, K., Franklin, F.C.H., Martienssen, R.A., et al. (2017). Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev. 31, 306-317. https://doi.org/10.1101/gad.295501.116