DOI QR코드

DOI QR Code

감귤 분자육종을 위한 분자표지 개발 현황 및 전망

Current status and prospects of molecular marker development for systematic breeding program in citrus

  • 김호방 ((주)바이오메딕 생명과학연구소) ;
  • 김재준 ((주)바이오메딕 생명과학연구소) ;
  • 오창재 ((주)바이오메딕 생명과학연구소) ;
  • 윤수현 (국립원예특작과학원 감귤연구소) ;
  • 송관정 (제주대학교 생물산업학부 원예환경전공)
  • Kim, Ho Bang (Life Sciences Research Institute, Biomedic Co. Ltd.) ;
  • Kim, Jae Joon (Life Sciences Research Institute, Biomedic Co. Ltd.) ;
  • Oh, Chang Jae (Life Sciences Research Institute, Biomedic Co. Ltd.) ;
  • Yun, Su-Hyun (Citrus Research Institute, National Institute of Horticultural & Herbal Science) ;
  • Song, Kwan Jeong (Major of Horticultural Science, Faculty of Bioscience and Industry, Jeju National University)
  • 투고 : 2016.09.15
  • 심사 : 2016.09.20
  • 발행 : 2016.09.30

초록

세계적인 과수작물로서의 경제적 중요성에도 불구하고, 감귤 생산은 주로 자연교잡 실생이나 눈 돌연변이로부터의 선발 또는 단순 품종 도입 등을 통해 이루어지고 있는 실정이다. 긴 유년기, 다배성, 자가불화합성과 같은 감귤 고유의 식물학적 특성, 주요 형질들(병저항성, 수량성, 품질 등)의 QTL에 의한 조절 등은 전통 육종을 통한 우수 품종의 개발을 어렵게 하는 요인이다. 지구 온난화에 의한 생산 여건의 급격한 변화, 소비자 요구 다양화 등은 고품질 감귤의 조기 선발과 안정적 생산, 품종 다양화, 육종 비용 절감 등을 위한 체계적인 감귤 분자육종 프로그램의 도입을 요구하고 있다. 동위효소를 이용한 최초의 감귤 연관지도 작성이 이루어진 이래, 다양한 분자표지를 이용한 연관지도 작성, 생물(CTV, CiLV, ABS, 선충] 및 비생물적(염분, 저온) 스트레스, 아포믹시스, 다배성, 과실착색(카로티노이드, 안토시아닌), 무종자, 웅성불임, 신맛 적음, 생식, 형태(나무, 잎, 꽃, 열매 등), 과실 품질, 종자수, 수량성, 조기 착과 등과 연관된 분자표지 발굴, QTL 맵핑 등이 이루어졌다. CTV 저항성과 적육(안토시아닌 축적) 형질에 대해서는 유전자 클로닝이 이루어졌고, 교배 육종 효율 증대 및 비용 절감을 위해 교잡배와 주심배를 구분하기 위한 다수의 simple sequence repeat (SSR) 분자표지가 개발되었다. 최근, 스위트오렌지와 '클레멘타인' 만다린에 대한 고품질의 표준 유전체가 완성되어 유전체 기반 감귤 분자육종을 위한 토대가 마련되었다. 표준 유전체 정보를 토대로 대규모 분자표지(SNP, SSR, InDel) 기반의 표준 연관 및 물리지도 작성, 비교 유전체 지도 작성, gene annotation, 전사체 분석 등이 활발히 이루어지고 있다. 감귤 유전자원 및 핵심집단에 대해 표준 유전체 기반 비교 유전체 분석, GBS (genotyping-by-sequencing), GWAS (genome wide association study) 등을 통해 감귤의 다양한 형질과 연관된 분자마커 발굴 및 개발, 유용/변이 유전자 클로닝 등에 관한 연구가 가속화될 것으로 전망된다. 또한 표적 유전체 교정 및 VIGS (virus-induced gene silencing) 기술도 유전자 마커의 검증을 비롯한 감귤 분자육종 프로그램에 활발히 이용될 것이다.

Citrus is an economically important fruit crop widely growing worldwide. However, citrus production largely depends on natural hybrid selection and bud sport mutation. Unique botanical features including long juvenility, polyembryony, and QTL that controls major agronomic traits can hinder the development of superior variety by conventional breeding. Diverse factors including drastic changes of citrus production environment due to global warming and changes in market trends require systematic molecular breeding program for early selection of elite candidates with target traits, sustainable production of high quality fruits, cultivar diversification, and cost-effective breeding. Since the construction of the first genetic linkage map using isozymes, citrus scientists have constructed linkage maps using various DNA-based markers and developed molecular markers related to biotic and abiotic stresses, polyembryony, fruit coloration, seedlessness, male sterility, acidless, morphology, fruit quality, seed number, yield, early fruit setting traits, and QTL mapping on genetic maps. Genes closely related to CTV resistance and flesh color have been cloned. SSR markers for identifying zygotic and nucellar individuals will contribute to cost-effective breeding. The two high quality citrus reference genomes recently released are being efficiently used for genomics-based molecular breeding such as construction of reference linkage/physical maps and comparative genome mapping. In the near future, the development of DNA molecular markers tightly linked to various agronomic traits and the cloning of useful and/or variant genes will be accelerated through comparative genome analysis using citrus core collection and genome-wide approaches such as genotyping-by-sequencing and genome wide association study.

키워드

참고문헌

  1. Akimitsu K, Peever TL, Timmer LW (2003) Molecular, ecological and evolutionary approaches to understanding Alternaria diseases of citrus. Mol Plant Pathol 4:435-446 https://doi.org/10.1046/j.1364-3703.2003.00189.x
  2. Altaf S, Khan MM, Jaskani MJ, Khan IA, Usman M, Sadia B, Awan FS, Ali A, Khan AI (2014) Morphogenetic characterization of seeded and seedless varieties of Kinnow Mandarin (Citrus reticulata Blanco). Australian J Crop Sci 8:1542-1549
  3. Asins MJ, Fernandez-Ribacoba J, Bernet GP, Gadea J, Cambra M, Gorris MT, Carbonell EA (2012) The position of the major QTL for citrus tristeza virus resistance is conserved among Citrus grandis, C. aurantium and Poncirus trifoliata. Mol Breed 29:575-587 https://doi.org/10.1007/s11032-011-9574-x
  4. Asins MJ, Raga V, Bernet GP, Carbonell EA (2015) Genetic analysis of reproductive, vegetative and fruit quality traits to improve Citrus varieties. Tree Genet Genomes 11:117 https://doi.org/10.1007/s11295-015-0949-8
  5. Balal RM, Khan MM, Shahid MA, Mattson NS, Abbas T, Ashfaq M, Garcia-Sanchez F, Ghazanfer U, Gimeno V, Iqbal Z (2012) Comparative studies on the physiobiochemical, enzymatic, and ionic modifications in salt-tolerant and salt-sensitive citrus rootstocks under NaCl stress. J Amer Soc Hort Sci 137:86-95
  6. Barcaccia G, Albertini E (2013) Apomixis in plant reproduction: a novel perspective on an old dilemma Plant Reprod 26:159-179 https://doi.org/10.1007/s00497-013-0222-y
  7. Bastianel M, Schwarz SF, Colleta-Filho HD, Lin LL, Machado MA, Koller OC (1998) Identification of zygotic and nucellar tangerine seedlings (Citrus spp.) using RAPD. Genet Mol Biol 21:123-127 https://doi.org/10.1590/S1415-47571998000100020
  8. Bastianel M, Oliveira AC, Cristofani M, Guerreiro Filho O, Freitas-Astua J, Rodrigues V, Astua-Monge G, Machado MA (2006) Inheritance and heritability of resistance to citrus leprosis. Phytopathol 96:1092-1096 https://doi.org/10.1094/PHYTO-96-1092
  9. Bastianel M, Cristofani-Yaly M, de Oliveira AC, Freitas-Astúa J, Garcia AAF, de Resende MDV, Rodrigues V, Machado MA (2009) Quantitative trait loci analysis of citrus leprosis resistance in an interspecific backcross family of (Citrus reticulata Blanco x C. sinensis L. Osbeck) x C. sinensis L. Osb. Euphytica 169:101-111 https://doi.org/10.1007/s10681-009-9950-3
  10. Biswas MK, Xu Q, Mayer C, Deng X (2014) Genome wide characterization of short tandem repeat markers in sweet orange (Citrus sinensis). PLoS One 9:e104182 https://doi.org/10.1371/journal.pone.0104182
  11. Bonina FP, Leotta C, Scalia G, Puglia C, Trombetta D, Tringali, G, Roccazzello AM, Rapisarda P, Saija A (2002) Evaluation of oxidative stress in diabetic patients after supplementation with a standardised red orange extract. Diabetes Nutr Metab 15:14-19
  12. Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:1242-1255 https://doi.org/10.1105/tpc.111.095232
  13. Cai Q, Guy CL, Moore GA (1994) Extension of the linkage map in Citrus using random amplified polymorphic DNA (RAPD) markers and RFLP mapping of cold-acclimation-responsive loci. Theor Appl Genet 89:606-614
  14. Cameron JW, Soost RK (1977) Acidity and total soluble solids in citrus hybrids and advanced crosses involving acidless orange and acidless pummelo. J Am Soc Hortic Sci 102:198-201
  15. Cameron JW (1979) Sexual and nucellar embryony in F1 hybrids and advanced crosses of Citrus and Poncirus. J Am Soc Hort Sci 104:408-410
  16. Canel C, Bailey-Serres JN, Roose ML (1995) In vitro [$^{14}C$] citrate uptake by tonoplast vesicles of acidless citrus juice cells. J Am Soc Hortic Sci 120:510-514
  17. Chae CW, Dutt M, Yun SH, Park JH, Lee DH (2011) Development of a SCAR marker linked to male fertility traits in 'Jinkyool' (Citrus sunki). J Life Sci 21:1659-1665 https://doi.org/10.5352/JLS.2011.21.12.1659
  18. Chavez DJ, Chaparro JX (2011) Identification of markers linked to seedlessness in Citrus kinokuni hort. ex Tanaka and its progeny using bulked segregant analysis. HortSci 46:693-697
  19. Chen C, Lo Piero AR, Gmitter F Jr (2015) Pigments in citrus. In: C Chen, (ed), Pigments in Fruits and Vegetables, Springer, New York, pp 165-187
  20. Cuenca J, Aleza P, Vicent A, Brunel D, Ollitrault P, Navarro L (2013) Genetically based location from triploid populations and gene ontology of a 3.3-mb genome region linked to Alternaria brown spot resistance in citrus reveal clusters of resistance genes. PLoS One 8:e76755 https://doi.org/10.1371/journal.pone.0076755
  21. Dalkilic Z, Timmer LW, Gmitter FG Jr (2005) Linkage of an Alternaria disease resistance gene in mandarin hybrids with RAPD fragments. J Am Soc Hort Sci 130:191-195
  22. Davies FS, Albrigo LG (1994) Citrus. CAB International, Wallingford, UK
  23. De Oliveira AC, Garcia AN, Cristofani M, Machado MA (2002) Identification of citrus hybrids through the combination of leaf apex morphology and SSR markers. Euphytica 128:397-403 https://doi.org/10.1023/A:1021223309212
  24. De Pascual-Teresa, S, Moreno DA, Garcia-Viguera C (2010) Flavanols and anthocyanins in cardiovascular health: A review of current evidence. Int J Mol Sci 11:1679-1703 https://doi.org/10.3390/ijms11041679
  25. Deng Z, Huang S, Xiao SY, Gmitter FG (1997) Development and characterization of SCAR markers linked to the citrus tristeza virus resistance gene from Poncirus trifoliata. Genome 40:697-704 https://doi.org/10.1139/g97-792
  26. Deng Z, Huang S, Ling P, Chen C, Yu C, Weber CA, Moore GA, Gmitter FG Jr (2000) Cloning and characterization of NBS-LRR class resistance-gene candidate sequences in citrus. Theor Appl Genet 101:814-822 https://doi.org/10.1007/s001220051548
  27. Deng Z, Tao Q, Chang YL, Huang S, Ling P, Yu C, Chen C, Gmitter FG Jr, Zhang HB (2001a) Construction of a bacterial artificial chromosome (BAC) library for citrus and identification of BAC contigs containing resistance gene candidates. Theor Appl Genet 102:1177-1184 https://doi.org/10.1007/s001220000527
  28. Deng Z, Huang S, Ling P, Yu C, Tao Q, Chen C, Wendell MK, Zhang HB, Gmitter FG Jr (2001b) Fine genetic mapping and BAC contig development for the citrus tristeza virus resistance gene locus in Poncirus trifoliata (Raf.). Mol Genet Genomics 265:739-747 https://doi.org/10.1007/s004380100471
  29. Donmez D, Sismek O, Izgu T, Kacar YA, Mendi YY (2013) Genetic transformation in Citrus. Scientific World J 2013:491207
  30. Fang DQ, Federici CT, Roose ML (1998) A high-resolution linkage map of the citrus tristeza virus resistance gene region in Poncirus trifoliata (L.) Raf. Genetics 150:883-890
  31. Fang DQ, Federici CT, Roose ML (1997) Development of molecular markers linked to a gene controlling fruit acidity in citrus. Genome 40:841-849 https://doi.org/10.1139/g97-809
  32. Fang DQ, Roose ML (1999) A novel gene conferring citrus tristeza virus resistance in Citrus maxima (Burm.) Merrill. Hortsci 34:334-335
  33. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Casbased methods for genome engineering. Trends Biotechnol 31:397-405 https://doi.org/10.1016/j.tibtech.2013.04.004
  34. Garcia R, Asins MJ, Forner J, Carbonell EA (1999) Genetic analysis of apomixis in Citrus and Poncirus by molecular markers. Theor Appl Genet 99:511-518 https://doi.org/10.1007/s001220051264
  35. Garcia MR, Asins MJ, Carbonell EA (2000) QTL analysis of yield and seed number in Citrus. Theor Appl Genet 101:487-493 https://doi.org/10.1007/s001220051507
  36. Garnsey SM, Barrett HC, Hutchison DJ (1987) Identification of citrus tristeza virus resistance in citrus relatives and its potential applications. Phytophylactica 19:187-191
  37. Garnsey SM, Su HJ, Tsai MC (1997) Differential susceptibility of pummelo and Swingle citrumelo to isolates of citrus tristeza virus. In: Da Graca JV, Moreno P, Yokomi RK (eds), Proc. 13th Conf. Intl. Organ. Citrus Virologists, Univ. California Press, Riverside, CA, USA pp 138-146
  38. Gmitter FG Jr, Xiao SY, Huang S, Hu XL, Garnsey SM, Deng Z (1996) A localized linkage map of the citrus tristeza virus resistance gene region. Theor Appl Genet 92:688-695 https://doi.org/10.1007/BF00226090
  39. Gmitter FG Jr, Deng Z, Chen C (2007) Cloning and characterization of disease resistance genes. In: I Khan, (ed), Citrus Genetics, Breeding and Biotechnology, CAB International, Oxfordshire, UK, pp 287-305
  40. Gulsen O, Uzun A, Canan I, Seday U, Canihos E (2010) A new citrus linkage map based on SRAP, SSR, ISSR, POGP, RGA and RAPD markers. Euphytica 173:265-277 https://doi.org/10.1007/s10681-010-0146-7
  41. Gulsen O, Uzun A, Seday U, Kafa G (2011) QTL analysis and regression model for estimating fruit setting in young citrus trees based on molecular markers. Sci Hortic 130:418-424 https://doi.org/10.1016/j.scienta.2011.07.010
  42. Han SH, Ahn HJ, Kang SG, Kim HY (2005) Expression of green fluorescent protein gene in the callus of satsuma mandarin (Citrus unshiu cv. Miyagawa Wase) by Agrobacterium-mediated transformation. Hort Environ Biotechnol 46:39-42
  43. Hong QB, Xiang SQ, Chen KL, Chen LG (2001) Two complementary dominant genes controlling apomixis in genus Citrus and Poncirus. Acta Genet Sin 28:1062-1067
  44. Hong QB, Ma XJ, Gong GZ, Peng ZC, He YR (2015) QTL mapping of citrus freeze tolerance. Acta Hort 10.17660/ActaHortic.2015.1065.57
  45. Iwamasa M, Ueno I, Nishiura M (1967) Inheritance of nucellar embryony in Citrus. Bull Hort Res Sta Japan, ser B 7:1-10
  46. Jayaprakasha GK, Patl BS (2007) In vitro evaluation of the antioxidant activities in fruit extracts from citron and blood orange. Food Chem 101:410-418 https://doi.org/10.1016/j.foodchem.2005.12.038
  47. Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9:e93806 https://doi.org/10.1371/journal.pone.0093806
  48. Kang SK, Yun SH, Lee DH (2008) Development of a SCAR marker linked to polyembryonic trait in citrus. Korean J Hort Sci Tech 26:51-55
  49. Kepiro JL, Roose ML (2007) Nucellar embryony. In: IA Khan, (ed), Citrus Genetics, Breeding and Biotechnology, CAB International, Oxfordshire, UK, pp 141-149
  50. Kepiro JL, Roose ML (2010) AFLP markers closely linked to a major gene essential for nucellar embryony (apomixis) in Citrus maxima x Poncirus trifoliata. Tree Genet Genomes 6:1-11 https://doi.org/10.1007/s11295-009-0223-z
  51. Kim HB, Lim S, Kim JJ, Park YC, Yun SH, Song KJ (2015) Current status and prospects of citrus genomics. J Plant Biotechnol 42:326-335 https://doi.org/10.5010/JPB.2015.42.4.326
  52. Kim JH, Handayani E, Wakana A, Sakai K, Sato M, Han JH (2013) Segregation of self-incompatible hybrid seedlings in crosses with grapefruit and possible RAPD markers for the S gene alleles. J Faculty Agric Kyushu Univ 58:269-275
  53. Kohmoto K, Akimitsu K, Otani H (1991) Correlation of resistance and susceptibility of citrus to Alternaria alternata with sensitivity to host-specific toxins. Phytopathol 81:719-722 https://doi.org/10.1094/Phyto-81-719
  54. Koltunow AM, Hidaka T, Robinson SP (1996) Polyembryony in Citrus: Accumulation of seed storage proteins in seeds and in embryos cultured in vitro. Plant Physiol 110:599-609 https://doi.org/10.1104/pp.110.2.599
  55. Ladaniya M (2008) Citrus fruit: biology, technology and evaluation. Elsevier Inc, Oxford, UK
  56. Latado RR, Tognato PC, Silva-Stenico ME, do Nascimento, LM, dos Santos PC (2008) Anthocyanin accumulation and physical and chemical characteristics of blood orange fruits during cold storage. Rev Bras Frutic 30:604-610 https://doi.org/10.1590/S0100-29452008000300007
  57. Ling P, Duncan LW, Deng Z, Dunn D, Hu X, Huang S, Gmitter FG Jr (2000) Inheritance of citrus nematode resistance and its linkage with molecular markers. Theor Appl Genet 100:1010-1017 https://doi.org/10.1007/s001220051382
  58. Maas EV (1993) Salinity and citriculture. Tree Physiol 12:195-216 https://doi.org/10.1093/treephys/12.2.195
  59. Mestre PF, Asins MJ, Pina JA, Navarro L (1997a) Efficient search for new resistant genotypes to the citrus tristeza closterovirus in the orange subfamily Aurantioideae. Theor Appl Genet 95:1282-1288 https://doi.org/10.1007/s001220050694
  60. Mestre PF, Asins MJ, Pina JA, Carbonell EA, Navarro L (1997b) Molecular markers flanking citrus tristeza virus resistance gene from Poncirus trifoliata (L) Raf. Theor Appl Genet 94:458-464 https://doi.org/10.1007/s001220050437
  61. Nakano M, Nesumi H, Yoshioka T, Yoshida T (2001) Segregation of plants with undeveloped anthers among hybrids derived from the seed parent, 'Kiyomi' (Citrus unshiu x C. sinensis). J Japan Soc Hort Sci 70:539-545 https://doi.org/10.2503/jjshs.70.539
  62. Nakano M, Shimizu T, Kuniga T, Nesumi H, Omura M (2008) Mapping and haplotyping of the flanking region of the polyembryony locus in Citrus unshiu Marcow. J Japanese Soc Hort Sci 77:109-114 https://doi.org/10.2503/jjshs1.77.109
  63. Nakano M, Kigoshi K, Shimizu T, Endo T, Shimada T, Fujii H, Omura M (2013) Characterization of genes associated with polyembryony and in vitro somatic embryogenesis in Citrus. Tree Genet Genomes 9:795-803 https://doi.org/10.1007/s11295-013-0598-8
  64. Nicolosi E (2007) Origin and taxonomy. In: I Khan, (ed), Citrus Genetics, Breeding and Biotechnology. CAB International, Oxfordshire, UK, pp 19-43
  65. Ollitrault P, Froelicher Y, Dambier D, Luro F, Yamamoto M, Khan IA (2007) Seedless and ploidy manipulation. In: I Khan, (ed), Citrus Genetics, Breeding and Biotechnology. CAB International, Oxfordshire, UK, p 197-218
  66. Ollitrault P, Terol J, Chen C, Federici CT, Lotfy S, Hippolyte I, Ollitrault F, Berard A, Chauveau A, Cuenca J, Costantino G, Kacar Y, Mu L, Garcia-Lor A, Froelicher Y, Aleza P, Boland A, Billot C, Navarro L, Luro F, Roose ML, Gmitter FG, Talon M, Brunel D (2012) A reference genetic map of Citrus clementina hort. ex Tan.; citrus evolution inferences from comparative mapping. BMC Genomics 13:593 https://doi.org/10.1186/1471-2164-13-593
  67. Parlevliet JE, Cameron JW (1959) Evidence on the inheritance of nucellar embryony in Citrus. Proc Am Soc Hortic Sci 74:252-260
  68. Penjor T, Yamamoto M, Uehara M, Ide M, Matsumoto N, Matsumoto R, Nagano Y (2013) Phylogenetic relationships of Citrus and its relatives based on matK gene sequences. PLoS ONE 8(4):e62574. https://doi.org/10.1371/journal.pone.0062574
  69. Pieringer AP, Edwards GJ (1967) Identification of nucellar and zygotic citrus seedlings by infrared spectroscopy. J Am Soc Hort Sci 86:226-234
  70. Pok P, Oh EU, Yi K, Kang JH, Ko BY, Kim HB, Song KJ (2015) Characterization of microspore development and pollen tube growth response to self- and cross-pollination in Jeju old local citrus species. Hort Environ Biotechnol 56:225-232 https://doi.org/10.1007/s13580-015-0133-y
  71. Raga V, Bernet GP, Carbonell EA, Asins MJ (2012) Segregation and linkage analyses in two complex populations derived from the citrus rootstock Cleopatra mandarin. Inheritance of seed reproductive traits. Tree Genet Genomes 8:1061-1071 https://doi.org/10.1007/s11295-012-0486-7
  72. Raga V, Bernet GP, Carbonell EA, Asins MJ (2014) Inheritance of rootstock effects and their association with salt-tolerance candidate genes in a progeny derived from 'Volkamer' lemon. J Amer Soc Hort Sci 139:518-528
  73. Raga V, Intrigliolo DS, Bernet GP, Carbonell EA, Asins MJ (2016) Genetic analysis of salt tolerance in a progeny derived from the citrus rootstocks Cleopatra mandarin and trifoliate orange. Tree Genet Genomes 12:34 https://doi.org/10.1007/s11295-016-0991-1
  74. Rai M (2006) Refinement of the Citrus tristeza virus resistance gene (Ctv) positional map in Poncirus trifoliata and generation of transgenic grapefruit (Citrus paradisi) plant lines with candidate resistance genes in this region. Plant Mol Biol 61:399-414 https://doi.org/10.1007/s11103-006-0018-7
  75. Rao MN, Soneji JR, Chen C, Huang S, Gmitter FG Jr (2008) Characterization of zygotic and nucellar seedlings from sour orange-like Citrus rootstock candidates using RAPD and EST-SSR markers. Tree Genet Genomes 4:113-124
  76. Riso P, Visioli F, Gardana C, Grande S, Brusamolino A, Galvano F, Galvano G, Porrini M (2005) Effects of blood orange juice intake on antioxidant bioavailability and on different markers related to oxidative stress. J Agric Food Chem 53:941-947 https://doi.org/10.1021/jf0485234
  77. Rodrigues JCV, Kitajima EW, Childers CC, Chagas CM (2003) Citrus leprosis virus vectored by Brevipalpus phoenicis (Acari: Tenuipalpidae) on citrus in Brazil. Exp Appl Acarol 30:161-179 https://doi.org/10.1023/B:APPA.0000006547.76802.6e
  78. Ruiz C, Paz Breto M, Asins MJ (2000) A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica 112:89-94 https://doi.org/10.1023/A:1003992719598
  79. Sahin-Cevik M, Moore GA (2012) Quantitative trait loci analysis of morphological traits in Citrus. Plant Biotechnol Rep 6:47-57 https://doi.org/10.1007/s11816-011-0194-z
  80. Soost RK, Williams TE, Torres AM (1980) Identification of nucellar and zygotic seedlings of Citrus with leaf isozymes. HortSci 15:728-729
  81. Talon M, Gmitter FG Jr (2008) Citrus genomics. Inter J Plant Genomics Article ID 528361
  82. Titta L, Trinei M, Stendardo M, Berniakovich I, Petroni K, Tonelli C, Riso P, Porrini M, Minucci S, Pelicci PG, Rapisarda P, Reforgiato Recupero G, Giorgio M (2010) Blood orange juice inhibits fat accumulation in mice. Int J Obes (Lond) 34:578-588 https://doi.org/10.1038/ijo.2009.266
  83. Tozlu I, Guy CL, Moore GA (1999a) QTL analysis of $Na^+$ and $Cl^-$ accumulation related traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and nonsaline environments. Genome 42:692-705 https://doi.org/10.1139/gen-42-4-692
  84. Tozlu I, Guy CL, Moore GA (1999b) QTL analysis of morphological traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and non-saline environments. Genome 42:1020-1029 https://doi.org/10.1139/gen-42-5-1020
  85. Ueno I, Iwamasa M, Nishiura M (1967) Embryo number of various varieties of Citrus and its relatives. Bull Hort Res Sta Japan ser. B7:11-22
  86. Weber CA, Moore GA, Deng Z, Gmitter FG Jr (2003) Mapping freeze tolerance quantitative trait loci in a Citrus grandis x Poncirus trifoliata F-1 pseudo-testcross using molecular markers. J Amer Soc Hort Sci 128:508-514
  87. Weinbaum SA, Cohen E, Spiegel-Roy P (1982) Rapid screening of ‘Satsuma’ mandarin progeny to distinguish nucellar and zygotic seedlings. Hort Sci 17:239-240
  88. Woo JW, Kim J, Kwon SI, Corvalan C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162-1164 https://doi.org/10.1038/nbt.3389
  89. Wu GA et al (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol 32:656-662 https://doi.org/10.1038/nbt.2906
  90. Xiao JP, Chen LG, Xie M, Liu HL, Ye WQ (2009) Identification of AFLP fragments linked to seedlessness in Ponkan mandarin (Citrus reticulata Blanco) and conversion to SCAR markers. Sci Hortic 121:505-510 https://doi.org/10.1016/j.scienta.2009.03.006
  91. Xu Q et al (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59-66 https://doi.org/10.1038/ng.2472
  92. Yamasaki A, Kitajima A, Ohara N, Tanaka M, Hasegawa K (2007) Histological study of expression of seedlessness in Citrus kinokuni ‘Mukaku Kishu’ and its progenies. J Amer Soc Hort Sci 132:869-875
  93. Yang ZN, Ye XR, Choi S, Molina J, Moonan F, Wing RA, Roose ML, Mirkov TE (2001) Construction of a 1.2-Mb contig including the citrus tristeza virus resistance gene locus using a bacterial artificial chromosome library of Poncirus trifoliata (L.) Raf. Genome 44:382-393 https://doi.org/10.1139/gen-44-3-382
  94. Yang ZN, Ye XR, Molina J, Roose ML, Mirkov TE (2003) Sequence analysis of a 282-kb region surrounding the citrus tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf. Plant Physiol 131:482-492 https://doi.org/10.1104/pp.011262
  95. Yildiz E, Kaplankiran M, Demirkeser TH, Uzun A, Toplu C (2013) Identification of zygotic and nucellar individuals produced from several citrus crosses using SSRs markers. Not Bot Horti Agrobo 41:478-484 https://doi.org/10.15835/nbha4129037
  96. Yoshida T (1985) Inheritance of susceptibility to citrus tristeza virus in trifoliate orange. Bull Fruit Trees Res Sta 82:17-26
  97. Yoshida T (1993) Inheritance of immunity to citrus tristeza virus of trifoliate orange in some citrus intergeneric hybrids. Bull Fruit Trees Res Sta 90:33-43
  98. Yun JU, Yang HB, Jung YH, Yun SH, Kim KS, Kim CS, Song KJ (2007) Identification of zygotic and nucellar mandarin seedlings using randomly amplified polymorphic DNA. Hort Environ Biotechnol 48:171-175
  99. Zeng W, Xie Z, Yang X, Ye J, Xu Q, Deng X (2013) Microsatellite polymorphism is likely involved in phytoene synthase activity in Citrus. Plant Cell Tiss Organ Cult 113:449-458 https://doi.org/10.1007/s11240-012-0285-8