Browse > Article
http://dx.doi.org/10.14348/molcells.2017.0171

Advances towards Controlling Meiotic Recombination for Plant Breeding  

Choi, Kyuha (Department of Life Sciences, Pohang University of Science and Technology)
Abstract
Meiotic homologous recombination generates new combinations of preexisting genetic variation and is a crucial process in plant breeding. Within the last decade, our understanding of plant meiotic recombination and genome diversity has advanced considerably. Innovation in DNA sequencing technology has led to the exploration of high-resolution genetic and epigenetic information in plant genomes, which has helped to accelerate plant breeding practices via high-throughput genotyping, and linkage and association mapping. In addition, great advances toward understanding the genetic and epigenetic control mechanisms of meiotic recombination have enabled the expansion of breeding programs and the unlocking of genetic diversity that can be used for crop improvement. This review highlights the recent literature on plant meiotic recombination and discusses the translation of this knowledge to the manipulation of meiotic recombination frequency and location with regards to crop plant breeding.
Keywords
breeding; crossover; epigenetics; meiotic DSBs; meiotic recombination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Crismani, W., Girard, C., Froger, N., Pradillo, M., Santos, J.L., Chelysheva, L., Copenhaver, G.P., Horlow, C., and Mercier, R. (2012). FANCM limits meiotic cxrossovers. Science 336, 1588-1590.   DOI
2 Da Ines, O., Degroote, F., Goubely, C., Amiard, S., Gallego, M.E., and White, C.I. (2013). Meiotic recombination in Arabidopsis is catalysed by DMC1, with RAD51 playing a supporting role. PLoS Genet. 9, e1003787.   DOI
3 De Muyt, A., Zhang, L., Piolot, T., Kleckner, N., Espagne, E., and Zickler, D. (2014). E3 ligase Hei10: a multifaceted structure-based signaling molecule with roles within and beyond meiosis. Genes Dev. 28, 1111-1123.   DOI
4 Qiao, H., Prasada Rao, H.B.D., Yang, Y., Fong, J.H., Cloutier, J.M., Deacon, D.C., Nagel, K.E., Swartz, R.K., Strong, E., Holloway, J.K., et al. (2014). Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination. Nat. Genet. 46, 194-199.   DOI
5 Sandor, C., Li, W., Coppieters, W., Druet, T., Charlier, C., and Georges, M. (2012). Genetic variants in REC8, RNF212, and PRDM9 influence male recombination in cattle. PLoS Genet. 8, e1002854.   DOI
6 Sasaki, M., Lange, J., and Keeney, S. (2010). Genome destabilization by homologous recombination in the germline. Nat. Rev. Mol. Cell Biol. 11, 182-195.   DOI
7 Seguela-Arnaud, M., Crismani, W., Larcheveque, C., Mazel, J., Froger, N., Choinard, S., Lemhemdi, A., Macaisne, N., Van Leene, J., Gevaert, K., et al. (2015). Multiple mechanisms limit meiotic crossovers: $TOP3{\alpha}$ and two BLM homologs antagonize crossovers in parallel to FANCM. Proc. Natl. Acad. Sci. USA 112, 4713-4718.   DOI
8 Seguela-Arnaud, M., Choinard, S., Larcheveque, C., Girard, C., Froger, N., Crismani, W., and Mercier, R. (2017). RMI1 and $TOP3{\alpha}$ limit meiotic CO formation through their C-terminal domains. Nucleic Acids Res. 45, 1860-1871.
9 Serra, H., Lambing, C., Griffin, C.H., Topp, S.D., Seguela-Arnaud, M., Fernandes, J., Mercier, R., and Henderson, I.R. (2017). Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis. bioRxiv 159764, https://doi.org/10.1101/159764.   DOI
10 Deng, Y., Zhai, K., Xie, Z., Yang, D., Zhu, X., Liu, J., Wang, X., Qin, P., Yang, Y., Zhang, G., et al. (2017). Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355, 962-965.   DOI
11 Doudna, J.A., and Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096.   DOI
12 Du, J., Zhong, X., Bernatavichute, Y. V, Stroud, H., Feng, S., Caro, E., Vashisht, A.A., Terragni, J., Chin, H.G., Tu, A., et al. (2012). Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151, 167-180.   DOI
13 Emmanuel, E., Yehuda, E., Melamed-Bessudo, C., Avivi-Ragolsky, N., and Levy, A.A. (2006). The role of AtMSH2 in homologous recombination in Arabidopsis thaliana. EMBO Rep. 7, 100-105.   DOI
14 Fernandes, J., Duhamel, M., Seguela-Arnaud, M., Froger, N., Girard, C., Choinard, S., De Winne, N., De Jaeger, G., Gevaert, K., Guerois, R., et al. (2017a). FIGL1 and its novel partner FLIP form a conserved complex that regulates homologous recombination. bioRxiv 159657, https://doi.org/10.1101/159657.   DOI
15 Soyk, S., Lemmon, Z.H., Oved, M., Fisher, J., Liberatore, K.L., Park, S.J., Goren, A., Jiang, K., Ramos, A., van der Knaap, E., et al. (2017). Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 169, 1142-1155.   DOI
16 Singhal, S., Leffler, E.M., Sannareddy, K., Turner, I., Venn, O., Hooper, D.M., Strand, A.I., Li, Q., Raney, B., Balakrishnan, C.N., et al. (2015). Stable recombination hotspots in birds. Science 350, 928-932.   DOI
17 Slotkin, R.K., and Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8, 272-285.
18 Fernandes, J.B., Seguela-Arnaud, M., Larcheveque, C., Lloyd, A.H., and Mercier, R. (2017b). Unleashing meiotic crossovers in hybrid plants. bioRxiv 159640, https://doi.org/10.1101/159640.   DOI
19 Fowler, K.R., Sasaki, M., Milman, N., Keeney, S., and Smith, G.R. (2014). Evolutionarily diverse determinants of meiotic DNA break and recombination landscapes across the genome. Genome Res. 24, 1650-1664.   DOI
20 Garcia, V., Phelps, S.E.L., Gray, S., and Neale, M.J. (2011). Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479, 241-244.   DOI
21 Stroud, H., Greenberg, M.V.C., Feng, S., Bernatavichute, Y. V, and Jacobsen, S.E. (2013). Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352-364.   DOI
22 Stroud, H., Do, T., Du, J., Zhong, X., Feng, S., Johnson, L., Patel, D.J., and Jacobsen, S.E. (2014). Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 21, 64-72.   DOI
23 Tomato Genome Consortium (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635-641.   DOI
24 Underwood, C.J., Henderson, I.R., and Martienssen, R.A. (2017a). Genetic and epigenetic variation of transposable elements in Arabidopsis. Curr. Opin. Plant Biol. 36, 135-141.   DOI
25 Grelon, M., Vezon, D., Gendrot, G., and Pelletier, G. (2001). AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J. 20, 589-600.   DOI
26 Girard, C., Crismani, W., Froger, N., Mazel, J., Lemhemdi, A., Horlow, C., and Mercier, R. (2014). FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers. Nucleic Acids Res. 42, 9087-9095.   DOI
27 Girard, C., Chelysheva, L., Choinard, S., Froger, N., Macaisne, N., Lehmemdi, A., Mazel, J., Crismani, W., and Mercier, R. (2015). AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms. PLoS Genet. 11, e1005369.   DOI
28 Gray, S., and Cohen, P.E. (2016). Control of meiotic crossovers: from double-strand break formation to designation. Annu. Rev. Genet. 50, 175-210.   DOI
29 Hartung, F., Wurz-Wildersinn, R., Fuchs, J., Schubert, I., Suer, S., and Puchta, H. (2007). The catalytically active tyrosine residues of both SPO11-1 and SPO11-2 are required for meiotic double-strand break induction in Arabidopsis. Plant Cell 19, 3090-3099.   DOI
30 Hellsten, U., Wright, K.M., Jenkins, J., Shu, S., Yuan, Y., Wessler, S.R., Schmutz, J., Willis, J.H., and Rokhsar, D.S. (2013). Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing. Proc. Natl. Acad. Sci. USA 110, 19478-19482.   DOI
31 Yelagandula, R., Stroud, H., Holec, S., Zhou, K., Feng, S., Zhong, X., Muthurajan, U.M., Nie, X., Kawashima, T., Groth, M., et al. (2014). The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell 158, 98-109.   DOI
32 Underwood, C.J., Choi, K., Lambing, C., Zhao, X., Serra, H., Borges, F., Simorowski, J., Ernst, E., Jacob, Y., Henderson, I.R., et al. (2017b). Epigenetic activation of meiotic recombination in Arabidopsis centromeres via loss of H3K9me2 and non-CG DNA methylation. bioRxiv 160929, https://doi.org/10.1101/160929.   DOI
33 Villeneuve, A.M., Hillers, K.J., Duffy, J.B., Kemphues, K.J., Villeneuve, A.M., Khodosh, R., and Hawley, R.S. (2001). Whence meiosis? Cell 106, 647-650.   DOI
34 Vrielynck, N., Chambon, A., Vezon, D., Pereira, L., Chelysheva, L., De Muyt, A., Mezard, C., Mayer, C., and Grelon, M. (2016). A DNA topoisomerase VI-like complex initiates meiotic recombination. Science 351, 939-943.   DOI
35 Wijnker, E., Velikkakam James, G., Ding, J., Becker, F., Klasen, J.R., Rawat, V., Rowan, B.A., de Jong, D.F., de Snoo, C.B., Zapata, L., et al. (2013). The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana. Elife 2, e01426.
36 Wolter, F., and Puchta, H. (2017). Knocking out consumer concerns and regulator's rules: efficient use of CRISPR/Cas ribonucleoprotein complexes for genome editing in cereals. Genome Biol. 18, 43.   DOI
37 Yelina, N.E., Choi, K., Chelysheva, L., Macaulay, M., de Snoo, B., Wijnker, E., Miller, N., Drouaud, J., Grelon, M., Copenhaver, G.P., et al. (2012). Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLoS Genet. 8, e1002844.   DOI
38 Yelina, N.E., Lambing, C., Hardcastle, T.J., Zhao, X., Santos, B., and Henderson, I.R. (2015). DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis. Genes Dev. 29, 2183-2202.   DOI
39 Hsu, P.D., Lander, E.S., and Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278.   DOI
40 Hunter, N. (2015). Meiotic Recombination: The essence of heredity. Cold Spring Harb. Perspect. Biol. 7, a016618.
41 Yin, K., Gao, C., and Qiu, J.-L. (2017). Progress and prospects in plant genome editing. Nat. Plants 3, 17107.   DOI
42 Zemach, A., Kim, M.Y., Hsieh, P.-H., Coleman-Derr, D., Eshed-Williams, L., Thao, K., Harmer, S.L., and Zilberman, D. (2013). The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193-205.   DOI
43 Ziolkowski, P.A., Berchowitz, L.E., Lambing, C., Yelina, N.E., Zhao, X., Kelly, K.A., Choi, K., Ziolkowska, L., June, V., Sanchez-Moran, E., et al. (2015). Juxtaposition of heterozygous and homozygous regions causes reciprocal crossover remodelling via interference during Arabidopsis meiosis. Elife 4, e03708.
44 Lam, I., and Keeney, S. (2014). Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb. Perspect. Biol. 7, a016634.
45 Johnson, L.M., Bostick, M., Zhang, X., Kraft, E., Henderson, I., Callis, J., and Jacobsen, S.E. (2007). The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr. Biol. 17, 379-384.   DOI
46 Kim, J.-S. (2016). Genome editing comes of age. Nat. Protoc. 11, 1573-1578.   DOI
47 Kong, A., Thorleifsson, G., Stefansson, H., Masson, G., Helgason, A., Gudbjartsson, D.F., Jonsdottir, G.M., Gudjonsson, S.A., Sverrisson, S., Thorlacius, T., et al. (2008). Sequence variants in the RNF212 gene associate with genome-wide recombination rate. Science 319, 1398-1401.   DOI
48 Lam, I., and Keeney, S. (2015). Nonparadoxical evolutionary stability of the recombination initiation landscape in yeast. Science 350, 932-937.   DOI
49 Lambing, C., Franklin, F.C.H., and Wang, C.-J.R. (2017). Understanding and manipulating meiotic recombination in plants. Plant Physiol. 173, 1530-1542.   DOI
50 Lange, J., Yamada, S., Tischfield, S.E., Pan, J., Kim, S., Zhu, X., Socci, N.D., Jasin, M., and Keeney, S. (2016). The landscape of mouse meiotic double-strand break formation, processing, and repair. Cell 167, 695-708.   DOI
51 Lichten, M., and Goldman, a S. (1995). Meiotic recombination hotspots. Annu. Rev. Genet. 29, 423-444.   DOI
52 Lindroth, A.M., Cao, X., Jackson, J.P., Zilberman, D., McCallum, C.M., Henikoff, S., and Jacobsen, S.E. (2001). Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292, 2077-2080.   DOI
53 Cao, X., Aufsatz, W., Zilberman, D., Mette, M.F., Huang, M.S., Matzke, M., and Jacobsen, S.E. (2003). Role of the DRM and CMT3 Methyltransferases in RNA-Directed DNA Methylation. Curr. Biol. 13, 2212-2217.   DOI
54 Ziolkowski, P.A., Underwood, C.J., Lambing, C., Martinez-Garcia, M., Lawrence, E.J., Ziolkowska, L., Griffin, C., Choi, K., Franklin, F.C.H., Martienssen, R.A., et al. (2017). Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev. 31, 306-317.   DOI
55 Barton, N.H., and Charlesworth, B. (1998). Why sex and recombination? Science 281, 1986-1990.   DOI
56 Baudat, F., Imai, Y., and de Massy, B. (2013). Meiotic recombination in mammals: localization and regulation. Nat. Rev. Genet. 14, 794-806.   DOI
57 Bevan, M.W., Uauy, C., Wulff, B.B.H., Zhou, J., Krasileva, K., and Clark, M.D. (2017). Genomic innovation for crop improvement. Nature 543, 346-354.   DOI
58 Borts, R.H., and Haber, J.E. (1987). Meiotic recombination in yeast: alteration by multiple heterozygosities. Science 237, 1459-1465.   DOI
59 Cannavo, E., and Cejka, P. (2014). Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514, 122-125.   DOI
60 Cao, X., and Jacobsen, S.E. (2002). Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr. Biol. 12, 1138-1144.   DOI
61 McClintock, B. (1956). Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol. 21, 197-216.
62 Lippman, Z., Gendrel, A.-V., Black, M., Vaughn, M.W., Dedhia, N., McCombie, W.R., Lavine, K., Mittal, V., May, B., Kasschau, K.D., et al. (2004). Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471-476.   DOI
63 Lister, R., O'Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, a H., and Ecker, J.R. (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523-536.   DOI
64 Mayer, K.F.X., Waugh, R., Brown, J.W.S., Schulman, A., Langridge, P., Platzer, M., Fincher, G.B., Muehlbauer, G.J., Sato, K., Close, T.J., et al. (2012). A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711-716.   DOI
65 Melamed-Bessudo, C., and Levy, A.A. (2012). Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc. Natl. Acad. Sci. USA. 109, E981-988.   DOI
66 Mercier, R., Mezard, C., Jenczewski, E., Macaisne, N., and Grelon, M. (2015). The molecular biology of meiosis in plants. Annu. Rev. Plant Biol. 66, 297-327.   DOI
67 Choi, K., Reinhard, C., Serra, H., Ziolkowski, P.A., Underwood, C.J., Zhao, X., Hardcastle, T.J., Yelina, N.E., Griffin, C., Jackson, M., et al. (2016). Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes. PLOS Genet. 12, e1006179.   DOI
68 Chaney, L., Sharp, A.R., Evans, C.R., and Udall, J.A. (2016). Genome Mapping in Plant Comparative Genomics. Trends Plant Sci. 21, 770-780.
69 Choi, K., and Henderson, I.R. (2015). Meiotic recombination hotspots - a comparative view. Plant J. 83, 52-61.   DOI
70 Choi, K., Zhao, X., Kelly, K.A., Venn, O., Higgins, J.D., Yelina, N.E., Hardcastle, T.J., Ziolkowski, P.A., Copenhaver, G.P., Franklin, F.C.H., et al. (2013). Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat. Genet. 45, 1327-1336.   DOI
71 Choi, K., Zhao, X., Lambing, C., Underwood, C.J., Hardcastle, T.J., Serra, H., Tock, A.J., Ziolkowski, P.A., Yelina, N.E., Martienssen, R.A., et al. (2017). Nucleosomes and DNA methylation shape meiotic DSB frequency in Arabidopsis transposons and gene regulatory regions. bioRxiv 160911, https://doi.org/10.1101/160911.   DOI
72 Clement, J., and de Massy, B. (2017). Birth and death of a protein. Elife 6, e29502.
73 Neale, M.J., Pan, J., and Keeney, S. (2005). Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053-1057.   DOI
74 Pan, J., Sasaki, M., Kniewel, R., Murakami, H., Blitzblau, H.G., Tischfield, S.E., Zhu, X., Neale, M.J., Jasin, M., Socci, N.D., et al. (2011). A hierarchical combination of factors shapes the genomewide topography of yeast meiotic recombination initiation. Cell 144, 719-731.   DOI
75 Puchta, H. (2017). Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr. Opin. Plant Biol. 36, 1-8.
76 Choulet, F., Alberti, A., Theil, S., Glover, N., Barbe, V., Daron, J., Pingault, L., Sourdille, P., Couloux, A., Paux, E., et al. (2014). Structural and functional partitioning of bread wheat chromosome 3B. Science 345, 1249721.   DOI
77 Chuong, E.B., Elde, N.C., and Feschotte, C. (2016). Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71-86.
78 Cloud, V., Chan, Y.-L., Grubb, J., Budke, B., and Bishop, D.K. (2012). Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science 337, 1222-1225.   DOI