References
- Levine, M. & Chang, T. Therapeutic drug monitoring of phenytoin. Rationale and current status. Clin. Pharmacokinet. 19, 341-358 (1990) https://doi.org/10.2165/00003088-199019050-00001
- Richens, A. Clinical pharmacokinetics of phenytoin. Clin. Pharmacokinet. 4, 153-169 (1979) https://doi.org/10.2165/00003088-197904030-00001
- Bajpai, M., Roskos, L.K., Shen, D.D. & Levy, R.H. Roles of cytochrome P4502C9 and cytochrome P4502C19 in the stereoselective metabolism of phenytoin to its major metabolite. Drug Metab. Dispos. 24, 1401-1403 (1996)
- Mamiya, K. et al. The effects of genetic polymorphisms of CYP2C9 and CYP2C19 on phenytoin metabolism in Japanese adult patients with epilepsy: studies in stereoselective hydroxylation and population pharmacokinetics. Epilepsia. 39, 1317-1323 (1998) https://doi.org/10.1111/j.1528-1157.1998.tb01330.x
- Miners, J.O. & Birkett, D.J. Cytochrome P4502C9:an enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol. 45, 525-538 (1998) https://doi.org/10.1046/j.1365-2125.1998.00721.x
- Giancarlo, G.M. et al. Relative contributions of CYP2C9 and 2C19 to phenytoin 4-hydroxylation in vitro: inhibition by sulfaphenazole, omeprazole, and ticlopidine. Eur. J. Clin. Pharmacol. 57, 31-36 (2001) https://doi.org/10.1007/s002280100268
- Horsmans, Y., Van den Berge, V., Bouckaert, A. & Desager, J.P. Phenytoin hydroxylation in a healthy Caucasian population: bimodal distribution of hydroxyphenytoin urinary excretion. Pharmacol. Toxicol. 81, 276-279 (1997)
- Goldstein, J.A. Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br. J. Clin. Pharmacol. 52, 349-355 (2001) https://doi.org/10.1046/j.0306-5251.2001.01499.x
- Kirchheiner, J. & Brockmoller, J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin. Pharmacol. Ther. 77, 1-16 (2005) https://doi.org/10.1016/j.clpt.2004.08.009
- Hung, C.C. et al. Dosage recommendation of pheny-toin for patients with epilepsy with different CYP2C9/CYP2C19 polymorphisms. Ther. Drug Monit. 26, 534-540 (2004) https://doi.org/10.1097/00007691-200410000-00012
- van der Weide, J., Steijns, L.S., van Weelden, M.J. & de Haan, K. The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. Pharmacogenetics 11, 287-291 (2001) https://doi.org/10.1097/00008571-200106000-00002
- Rettie, A.E., Haining, R.L., Bajpai, M. & Levy, R.H. A common genetic basis for idiosyncratic toxicity of warfarin and phenytoin. Epilepsy Res. 35, 253-255 (1999) https://doi.org/10.1016/S0920-1211(99)00017-0
- Soga, Y. et al. CYP2C polymorphisms, phenytoin metabolism and gingival overgrowth in epileptic subjects. Life Sci. 74, 827-834 (2004) https://doi.org/10.1016/j.lfs.2003.07.018
- Odani, A. et al. Genetic polymorphism of the CYP2C subfamily and its effect on the pharmacokinetics of phenytoin in Japanese patients with epilepsy. Clin. Pharmacol. Ther. 62, 287-292 (1997) https://doi.org/10.1016/S0009-9236(97)90031-X
- Yoon, Y.R. et al. Frequency of cytochrome P450 2C9 mutant alleles in a Korean population. Br. J. Clin. Pharmacol. 51, 277-280 (2001) https://doi.org/10.1046/j.1365-2125.2001.00340.x
- Brandolese, R. et al. Severe phenytoin intoxication in a subject homozygous for CYP2C9*3. Clin. Pharmacol. Ther. 70, 391-394 (2001)
- Lardizabal, D.V., Luders, H.O., Hovinga, C.A. & Bourgeois, B.F. Severe intoxication after phenytoin infusion: a preventable pharmacogenetic adverse reaction. Neurology 62, 161; author reply 161 (2004) https://doi.org/10.1212/WNL.62.1.161
- Ninomiya, H. et al. Genetic polymorphism of the CYP2C subfamily and excessive serum phenytoin concentration with central nervous system intoxication. Ther. Drug Monit. 22, 230-232 (2000) https://doi.org/10.1097/00007691-200004000-00016
- Aynacioglu, A.S. et al. Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br. J. Clin. Pharmacol. 48, 409-415 (1999) https://doi.org/10.1046/j.1365-2125.1999.00012.x