• Title/Summary/Keyword: Modulus transformation

Search Result 61, Processing Time 0.026 seconds

Adaptive Feedback Linearization Control Based on Airgap Flux Model for Induction Motors

  • Jeon Seok-Ho;Baang Dane;Choi Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.414-427
    • /
    • 2006
  • This paper presents an adaptive feedback linearization control scheme for induction motors with simultaneous variation of rotor and stator resistances. Two typical modeling techniques, rotor flux model and stator flux model, have been developed and successfully applied to the controller design and adaptive observer design, respectively. By using stator fluxes as states, over-parametrization in adaptive control can be prevented and control strategy can be developed without the need of nonlinear transformation. It also decrease the relative degree for the flux modulus by one, thereby, yielding, a simple control algorithm. However, when this method is used for flux observer, it cannot guarantee the convergence of flux. Similarly, the rotor flux model may be appropriate for observers, but it is not so for adaptive controllers. In addition, if these two existing methods are merged into overall adaptive control system, it brings about structural complexies. In this paper, we did not use these two modeling methods, and opted for the airgap flux model which takes on only the positive aspects of the existing rotor flux model and stator flux model and prevents structural complexity from occuring. Through theoretical analysis by using Lyapunov's direct method, simulations, and actual experiments, it is shown that stator and rotor resistances converge to their actual values, flux is well estimated, and torque and flux are controlled independently with the measurements of rotor speed, stator currents, and stator voltages. These results were achieved under the persistent excitation condition, which is shown to hold in the simulation.

Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive (상압소결(常壓燒結)한 SiC-$ZrB_2$ 도전성(導電性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Lee, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1230-1231
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of 8${\sim}$20[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.01[%], 81.58[Mpa], 31.437[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites. In this paper, it is convinced that ${\beta}$-SiC based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

  • PDF

Electrical Properties of SiC Composites by Transition Metal (천이금속에 따른 SiC계 복합체의 전기적 특성)

  • Shin, Yong-Deok;Seo, Je-Ho;Ju, Jin-Young;Ko, Tae-Hun;Kim, Young-Bek
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1303-1304
    • /
    • 2007
  • The composites were fabricated, respectively, using 61[vol.%]SiC-39[vol.%]$TiB_2$ and using 61[vol.%]SiC-39[vol.%]$ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_{2}O_{3}+Y_{2}O_{3}$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. ${\beta}{\rightarrow}{\alpha}$-SiC phase transformation was occurred on the SiC-$TiB_2$ and SiC-$ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 226.06[Mpa] and 86.38[Gpa] in SiC-$ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[{\Omega}{\cdot}cm]$ for SiC-$ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the SiC-$TiB_2$ and SiC-$ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the value of $6.88{\times}10^{-3}/[^{\circ}C]$ and $3.57{\times}10^{-3}/[^{\circ}C]$ for SiC-$ZrB_2$ and SiC-$TiB_2$ composite in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$.

  • PDF

Liquid Metal Enabled Thermo-Responsive Poly(N-isopropylacrylamide)Hydrogel for Reversible Electrical Switch (액체금속이 첨가된 온도 감응성 poly(N-isopropylacrylamide) 하이드로젤의 전기적 특성 변화 고찰)

  • Lim, Taehwan;Lee, Sohee;Yeo, Sang Young
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.207-216
    • /
    • 2022
  • Hydrogels have gained considerable attention in various fields due to their easily transformative ability by different stimulation. In addition, metal-based conductive additives can enable the hydrogels to be conductive with dimension change. Although the development of the additives offered enhanced electrical properties to the hydrogels, correspondingly enhanced mechanical properties may limit the volume and electrical properties switching after stimulation. Here we prepared poly(N-isopropylacrylamide) (PNIPAM) thermo-responsive hydrogel that has a 32℃ of low critical solution temperature and added liquid metal particles (LMPs) as conductive additives, possessing soft and stretchable benefits. The LMPs enabled PNIPAM (PNIPAM/LMPs) hydrogels to be constricted over 32℃ with a high volume switching ratio of 15.2 when deswelled. Once the LMPs are spontaneously oxidized in hydrogel culture, the LMPs can release gallium ions into the hydrogel nature. The released gallium ions and oxidized LMPs enhanced the modulus of the PNIPAM/LMPs hydrogel, triggering high mechanical stability during repeated swelling/deswelling behavior. Lastly, highly constricted PNIPAM/LMPs hydrogel provided a 5x106 of electrical switching after deswelling, and the switching ratio was closely maintained after repeated swelling/deswelling transformation. This study opens up opportunities for hydrogel use requiring thermo-responsive and high electrical switching fields.

Effects of Boride on Microstructure and Properties of the Electroconductive Ceramic Composites of Liquid-Phase-Sintered Silicon Carbide System (액상소결(液狀燒結)한 SiC계(系)의 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Boride의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1602-1608
    • /
    • 2007
  • The composites were fabricated, respectively, using 61[vol.%] SiC-39[vol.%] $TiB_2$ and using 61[vol.%] SiC-39[vol.%] $ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H, 3C), $TiB_2$, $ZrB_2$ and $YAG(Al_5Y_3O_{12})$ crystal phase on the Liquid-Phase-Sintered(LPS) $SiC-TiB_2$, and $SiC-ZrB_2$ composite. $\beta\rightarrow\alpha-SiC$ phase transformation was occurred on the $SiC-TiB_2$ and $SiC-ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 249.42[MPa] and 91.64[GPa] in $SiC-ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[\Omega{\cdot}cm]$ for $SiC-ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the lowest value of $1.319\times10^{-3}/[^{\circ}C]$ for $SiC-ZrB_2$ composite in the temperature ranges from $100[^{\circ}C]$ to $300[^{\circ}C]$ Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 SiC-$ZrB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2015-2022
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressurless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6 : 4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of $8\;{\sim}\;20$[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.02[%], 81.58[MPa], 31.44[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from $\beta$-SiC into $\alpha$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of $3.l4{\times}10^{-2}{\Omega}{\cdot}cm$ for $SiC-ZrB_2$ composite added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at 700[$^{\circ}C$]. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all negative temperature coefficient resistance (NTCR) in the temperature ranges from room temperature to 700[$^{\circ}C$]. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

Effects of In Situ YAG on Properties of the Pressurless Annealed Sic-$TiB_2$ Electroconductive Ceramic Composites (무가압 어닐드한 Sic-$TiB_2$ 전도성 복합체의 특성에 미치는 In Situ YAG의 영향)

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.808-815
    • /
    • 2008
  • The composites were fabricated 61[vol.%] ${\beta}$-SiC and 39[vol.%] $TiB_2$ powders with the liquid forming additives of 8, 12, 16[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressureless annealing at 1650[$^{\circ}C$] for 4 hours. The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), ${\beta}$-SiC(3C), $TiB_2$, and In Situ YAG($Al_2Y_3O_{12}$). The relative density of SiC-$TiB_2$ composites was lowered due to gaseous products of the result of reaction between SiC and $Al_2O_3+Y_2O_3$. There is another reason which pressureless annealed temperature 1650[$^{\circ}C$] is lower $300{\sim}450[^{\circ}C]$ than applied pressure sintering temperature $1950{\sim}2100[^{\circ}C]$. The relative density, the flexural strength, the Young's modulus and the Vicker's hardness showed the highest value of 82.29[%], 189.5[Mpa], 54.60[Gpa] and 2.84[Gpa] for SiC-$TiB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of 0.0117[${\Omega}{\cdot}cm$] for 16[wt%] $Al_2O_3+Y_2O_3$ additives at 25[$^{\circ}C$]. The electrical resistivity was all negative temperature coefficient resistance (NTCR) in the temperature ranges from $25^{\circ}C$ to 700[$^{\circ}C$]. The resistance temperature coefficient of composite showed the lowest value of $-2.3{\times}10^{-3}[^{\circ}C]^{-1}$ for 16[wt%] additives in the temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$].

Rheological Behavior of Lyotropilc Solutions of Cellulose in the $NH_3/NH_4SCN$ Solvent System

  • Jo, Jae-Jeong;Cuculo, J.A.;Theil, M.H.
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1990.06b
    • /
    • pp.36-37
    • /
    • 1990
  • In the past, facile dissolution of cellulose has been hampered by the lack of suitable nondegrading solvents. Recently, this problem has been solved in our laboratory by the discovery of an inexpensive, convenient solvent system, that is the mixture of $NH_3\;and\;NH_4SCN$, for cellulose. Also, the $cellulose/NH_3/NH_4SCN$ solution system has been found to form the anisotropic, i.e., liquid crystalline phase. It is believed that both the cholesterio and the nematic phase occur. This finding has prompted extensive on-going researoh on the formation of the liquid crystalline phase from an inexpensive natural source such as cellulose since the nematic phase is envisioned as an excellent precursor sources for products with desirable properties, for example, high modulus and high strength. This interest naturally leads to a desire to understand the theological properties of the nematic phase so that the transformation of the nematic phase to the solid state with desirable properties can be efficiently accomplished, ;From this point of view, the theological behavior of the $cellulose/NH3_/NH_4SCN$ system has been studied as a function of shear rate and shear stress over a wide range of solvent compositions, cellulose concentration, centrifugation and urea contents, Results indicate that the viscosity decreases with increasing shear rate. A marked shear thinning behavior and a quasi-Newtonian behavior were observed in the low shear rate region and in the high shear rate region, respectively for all solvent compositions. The $cellulose/NH_3/NH_4SCN$ solution system only exhibited the viscosity increase with increasing cellulose concentration and failed to show the viscosity drop generally observed at the point of incipience of liquid crystal formation, This may be due to the gel-like nature of the solution by the association of the rodlike molecules into bundles which may serve as crosslinking points giving the cellulose solution a network structure. Also, simply hydrogen bonding may be so restrictive of molecular mobility that a viscosity drop is blocked. In addition to the above results, yield stress and thixotropy were also observed in the $cellulose/NH_3/NB_4SCN$ solution system which are characteristics of liquid crystal and gel, The results of the effect of centrifugation on viscosity show that viscosity decreases by the application of centrifugation. This may be explained by the change of the piled polydomain structure to the dispersed polydomain structure due to the pressure gradient generated during centrifugation.ation.

  • PDF

Anisotropic Compression Behavior and Phase Transition of Sepiolite Under Moderate Pressure Conditions (천부지권 압력 하 해포석의 비등방적 압축 특성 및 상전이 연구)

  • Seohee, Yun;Yongjae, Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.423-430
    • /
    • 2022
  • Pressure-dependent elastic behavior and chemical reaction of natural sepiolite (Mg8Si12O30(OH)4·12H2O) was studied under two different pressure-transmitting medium (PTM) conditions using synchrotron X-ray powder diffraction. Under non pore-penetrating silicone oil PTM, we observed that the b-axis length increases up to ca. 3.6 GPa, marking an anisotropic compression region with negative linear compressibility of βb= -0.0012 GPa-1, which then decreases at 7.7 GPa. Under pore-penetrating water PTM, the anisotropic compression behavior is enhanced with doubled negative linear compressibility of βb= -0.0025 GPa-1 up to 3.2 GPa, where transformation into stevensite is observed upon ex-situ temperature treatment at 280 ℃ as confirmed via XRD and SEM. Derived bulk moduli (K0) and linear compressibilities (β) were compared to other structurally and chemically related minerals.

Development and Application of Cellulose Nanofiber Powder as a Nucleating Agent in Polylactic Acid (나노셀룰로오스 분말 개발과 폴리젖산 내 핵제 적용 연구)

  • Sanghyeon Ju;Ajeong Lee;Youngeun Shin;Teahoon Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.51-57
    • /
    • 2023
  • Because of the global pollution caused by plastic disposal, demand for eco-friendly transformation in the packaging industry is increased. As part of that, the utilization of polylactic acid (PLA) as a food packaging material is increased. However, it is necessary to improve the crystallinity of PLA by adding nucleating agents or to improve the modulus by adding fillers because of the excessive brittleness of the PLA matrix. Thus, the cellulose nanofiber (CNF) was fabricated and dried to obtain a powder form and applied to the CNF/PLA nanocomposite. The effect of CNF on the morphological, thermal, rheological, and dynamic mechanical properties of the composite was analyzed. We can confirm the impregnated CNF particle in the PLA matrix through the field emission scanning electron microscope (FE-SEM). Differential scanning calorimetry (DSC) analysis showed that the crystallinity of not annealed CNF/PLA nanocomposite was increased approximately 2 and 4 times in the 1st and 2nd cycle, respectively, with the shift to lower temperature of cold crystallization temperature (Tcc) in the 2nd cycle. Moreover, the crystallinity of annealed CNF/PLA nanocomposite increased by 13.4%, and shifted Tcc was confirmed.