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Adaptive Feedback Linearization Control Based on Airgap
Flux Model for Induction Motors

Seok Ho Jeon, Dane Baang, and Jin Young Choi*

Abstract: This paper presents an adaptive feedback linearization control scheme for induction
motors with simultaneous variation of rotor and stator resistances. Two typical modeling
techniques, rotor flux model and stator flux model, have been developed and successfully applied
to the controller design and adaptive observer design, respectively. By using stator fluxes as
states, over-parametrization in adaptive control can be prevented and control strategy can be
developed without the need of nonlinear transformation. It also decrease the relative degree for
the flux modulus by one, thereby, yielding a simple control algorithm. However, when this
method is used for flux observer, it cannot guarantee the convergence of flux. Similarly, the rotor
flux model may be appropriate for observers, but it is not so for adaptive controllers. In addition,
if these two existing methods are merged into overall adaptive control system, it brings about
structural complexies. In this paper, we did not use these two medeling methods, and opted for
the airgap flux model which takes on only the positive aspects of the existing rotor flux model
and stator flux model and prevents structural complexity from occuring. Through theoretical
analysis by using Lyapunov’s direct method, simulations, and actual experiments, it is shown that
stator and rotor resistances converge to their actual values, flux is well estimated, and torque and
flux are controlled independently with the measurements of rotor speed, stator currents, and
stator voltages. These results were achieved under the persistent excitation condition, which is
shown to hold in the simulation.

Keywords: Adaptive control, adaptive observer, feedback linearization, induction motors,

parameter estimation.

1. INTRODUCTION

The field-oriented control scheme has been
developed to achieve high performance of induction
mofors that are widely used in industry due to its
reliability, low cost, and easy maintenance. While
there are flux changes, the field-oriented control
scheme cannot achieve decoupling control between
two output variables (i.e., torque and flux).
Furthermore, there are certain motor parameters such
as rotor resistance and stator resistance that tend to
vary during operation due to temperature, skin effect,
etc, and so it is necessary to find means to compensate
for such variations. Many researches have been
conducted to estimate the rotor and stator resistances,
such as using MRAC (Model reference adaptive
control) [1-4], extended kalman filter [5-10], neural
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network and fuzzy logic [11-13]. But in most of these
techniques, it is assume that at least one of rotor
resistance or stator resistance is known.

Various nonlinear control schemes have also been
applied to induction motors. In particular, the
feedback linearization methods that guarantee the
decoupling characteristics for all operation regions
have been proposed [7-15]. Passivity-based methods
have been applied to induction motors [16-18] and the
backstepping technique has also been proposed [19].
In order to estimate both resistances and control
torque and flux, there are two kinds of modeling
methods, but they both have good and bad points.

By using stator fluxes as states, over-
parametrization in adaptive control can be prevented
and control inputs can be determined directly without
the need of nonlinear transformation. With this
approach, the relative degree for the flux modulus can
be decreased, hence, yielding a simple control
algorithm. But, when this method is used for flux
observer, it cannot guarantee the convergence of flux.
By using rotor fluxes as states, it can be guaranteed
that the asymptotic convergence of flux is achieved
when used for flux observers. On the hindsight,
however, over-parametrization is unavoidable, relative
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degree for the flux modulus is not decreased, and
lastly, a nonlinear transformation is needed in adaptive
control problem.

In summary, stator flux model may be appropriate
for controller design and rotor flux model for observer
design, but a combined control system that uses the
stator flux model for controller and rotor flux model
for observer, involve extremely complex structure and
equations. To overcome this limitation, in this paper,
we propose an adaptive input-output feedback
linearization control system based on the airgap flux
model, which takes on only the positive aspects of the
two models and at the same time assures that the
design of both controller and observer are not much
complex. The overall stability and convergence
analysis by using Lyapunov’s direct method shows
that, under the persistent excitation condition, the
proposed adaptive observer can estimate correct
values of stator and rotor resistances as well as, airgap
flux in the case of simultaneous variation of stator and
rotor resistances. Torque and flux can be controlled
independently with the measurements of rotor speed,
stator currents and stator voltages. Through computer
simulations and actual experiments, the effectiveness
of the proposed control scheme is verified.

The rest of the paper is organized as follows. In
Section 2, we will describe the modeling methods and
derive error dynamics. In Section 3, we will design
torque and flux controllers. In Section 4, we will
derive adaptive laws and present the result of the
overall convergence analysis. In Section 5 and 6, we
present the simulation results and experiment results,
respectively. Finally, in Section 7, we present our
conclusions.

2. MODELING AND ERROR DYNAMICS
DERIVATION

Using dg-transformation, the electrical dynamics of
a three-phase induction motor can be described in a
two-axis coordinates frame [2]. If we choose a
stationary reference frame, it is described as

d
V,=Ri,+—A4,:
ds s'ds dt ds

(1

0=Rriqr +Elqr -,

The first two in (1) are stator circuit equations and
the rest are rotor circuit equations. The relation
between fluxes and currents are given by (2), under
the assumption of linear magnetic circuits.

Ap=Lgi, +L (i, +i,)=Li, +Li,,
Aw =Ly, +L, G, +i )=Li +L,ki,,
Ap =Lyiy + L,y +iy) =Ly +L,i,, ()
o =Ly, +L, G, +i, )=Li +L,i,,

ﬂ’da = Lm (ids + idr) s
A =L, +i,).

~

Among the variables, if we choose airgap fluxes
Agar A 4o A8 states, the airgap flux model is given by (3).

Airgap flux model:
d Ly-L, .. L LiL, .
— Ay, =—2—C R, ——2RA,; +—2Ri
dt da Lo— stds Lr . rda Lr - rids
L L o LI
_ia)rﬂ«qa _L—;(LIS _Lg)wrlqs _—SLO_—O-VdS
d Ly-L, . L LiL, . .
—aa =BT Ry =R gy + LRy
ag r—c r=c
L L , L, -L
+Liwr’1da +LA(LIS _La)a)rlds —qus
o o (o3
d. R . R .
g = =gy + (g = Lpi)
dt AY Lo_ AY LrLo_ a m-das
- L 1
+—@, Ay + s o Wyl + 7 Vs
ag (e} o
d R, R,
=Sy (A = L)
dr L, @ L.L, qa s 3)
1 L,-L 1
-—w Ay, L0, +—V,.
Lo' r/“da Lo' rtds Lo— qs

In most cases i can be directly measurable,

’ ids’
but lda,ﬂqa can not, which means an observer is

necessary. If the Luenberger observer is used,
assuming that the information of all parameter
values are provided, the dynamics of the error
between the estimated flux and the real flux can be
easily assured to be globally asymptotically stable
as follows.

Flux estimation law:

d Lo-Ly, .. Lo .~ L, . .
— A, =2 R, ——2 RA, +—TR
dt da Lo- stds Lr Lo- rMda L rtds
Lls 7 Lls . Lls _LO'
- La' a)rﬂ'qc'z - LG (Lls - La)a)rlqs - Lo- Vds’
d L, —L L A L L
e =T Rdas =R ga T R
(4 ro ri~o
P L -
+—w /ld +——s“(Ll —-L )a) 2] "MV B
Lo- rYda Lo- s o /Wrtds Lo- gs
“4)
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A A

where Ada,Aq are estimates of Ada, Aga, respec-

tively.
Flux estimation error:
~ L -
iﬂda=— L RA, 2wl ,
dt LL Lﬂ ’
- L L —_
LIy L R 3 S ®)
dar L.L, L,
Where Zda é /Ida_ /’{«da s /iqa é Z«qa - /,an .

Define Lyapunov-like function as ¥, =l(1§a +/¥a),

Lls r

then its derivative is iVa =
dt L.L,

(ﬁda /iqza). So

[ida,/iqa] €L, ML, and, from (5), [ida,iqa]e L.

From Barbalat’s we can derive

lim Ay, =0, lim /?.

{—® t—x©
The problem that is dealt with in this paper, is the
feedback linearizing controller design when R, R,

Lemma [20],

are bounded constants, but unknown. In such case, an
adaptive observer which estimates R, R,, and Ay,

Agq simultaneously is needed. The proposed adaptive

observer for dealing with these estimations has the
following form, with R, R,, replaced by there

7

corresponding  estimates, respectively, and two
additional design functions f,, fq.
d = L, L~ . P oA
E da = ISL z Rty — (Ada = Linias )R,
(e} r-a
L ~ , L, —L
—L—Swriq s (L,S = L),y —% s>
ag ag
d = Ll _L ~ . l A . A
-Jt—/lqa = SL (e Rslqs — I Ls (//an Lmlqs)Rr
ag r—c
L, L. —L
+ B Ay + L (L~ L)w,iy B0y
Lo- la Lo. s o /Wrtds La gs
d . R .
— gy = =g + ——— Ay — Lplas)
dt A) Lo_ A} rLo_ a m-as
1 ~ L —L
+_wr2'qa L Ga)r qs s+fd’
(e} (e} (e} (6)
d 8 R - ,
+ (4 i)
dt qS LO_ qs LrLo_ qa m-qs
1 ~ L -L P 1
@, Agy ———Zw iy +—V,  + [,
- ¥ a Lo. r-as Lo. qs q
N N

where igs, igs areestimates of iy, i, respectively.
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Since iy, i, are measurable, we can practically use

them instead of their estimates. But their estimates are
used to compose (6) for obtaining error dynamics.
This error dynamics will be included in parameter

estimation algorithm, where parameters are updated in
such a way that it minimizes a function of the errors

between the measurable signal (; dss lgs

estimates of them (;ds,

), and the
igs ). From (3) and (6), the

error dynamics is given by (7).

d - L, - L

LS

1. Do 1. 7
Eﬂda = STO-Rslds _—‘Rr/lda
(o] rto
Ll 2 L] L -4 Ll =~
- I 2 Ada ¥ +Zs_mlder _L_Sa)rﬂqa’
o ro (]
d - L—L Ly . -
E ga SLG = stqs Lr - Rrﬂ“qa
‘ L, - L L L, =
> ga't'r — qur +_Swrﬂ'da5
LrLO' LrLO' o 7
d. _ k. o, A g
Ids Igs + /lda + Rr
dt L, * L1, L.L,
L ~
iy Ry — @ Ay~ fas
LrLg /s Lg r’tqa
d. _ R R -
Igs = - gs T . qa : 4
dt L, " LI, LI,
L, . - 1 =
— 7 ]nj lqur —L—a)rlda —f‘q.
r~o (o4

Define new state variables z,, z, as

242 Ay + Lyl + .[tﬁsidsdt,
5 (®)
z, 24, +L,qu+_[Rz dt.

Then the airgap flux estimation error can be
rewritten as

- . = t A
ﬂ’da =zg— Lyige — Ry — J Rs]dsdt’

Aga = 2g — Ligtyg — Rolpg — j Rslqsdt
, ©
[ds = IO idsdt’
t .
Iy = Olqsdt.
By applying (7) to (9), the estimation error
dynamics about iy, i,, are expressed as

d -

iy = Lls r T
da®

)
LI

r-c ag

(lds + @, qv)
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+ I za (Ada = Lintgs) + ero_ Z4
P [ R~
+z)—;zq———a)l -[0 g5t =145
I —wrlds)+%;<iqa ~Lyig)
+LR2 " (z+0sqsdf) roqs
Z’— d+§—’aw g+ jozésldsdt—fq, (10)
where R=R,-R,, 3,52, —%,, Eqézq—éq. Now

we design feedback stabilizing functions f; f; as
follows.

R~ ta o, .
fa=—(a+ jORszdsdt)——zds + 2,
ro r-c (o2
o, .
+L—r g~ J‘O S[qsdf‘f'kllds,
N (11)
R, R 0}
zg+ | Roi .dp)- I —-——=z
fq rLO'( ! '[ qu ) LrLO' ” Lo- 4
N
—L—rﬂd +L_vwrlds J-ORsldsdt +k2lq5’
(o2 g
where ki, k, are some positive gains, 7,, n, are

A ~ A A A
defined as 7y, =2, =25 24, 1,52, =2,—2,. 7y,

1, are defined again because the error dynamics of
Nq4s M, Wwill be used to derive adaptive laws later on.

Finally, by using (11), the estimation of error
dynamics for iy, i, is obtained as

d - Ller k R :
—i=- + k)i ——(ig + @
dt ds (LrLa l)ds U(ds r qs)
R fa . n~ t A -
(ﬂ'da _Lmlds +z4+ JORsldsdt)
r o
R, R o
- 1o+ %
L, ¢ L, e 12
d - Ller R
—1 - +k w,l
dt qs (LrLo- 2) U(qv r ds)
R R
+ era (Aga = Liplgs + 24 + J lgsdl)
R, . R w, .
- Los == T4,
LL, ' LL, " L,
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~ A A ~ A ~ A A
where 7, =n4—17,, 7, =n,-1,, and 7,, 7, are

the estimates of 7,, 7,, respectively.

3. DESIGN OF THE TORQUE AND FLUX
CONTROLLER AND ERROR DYNAMICS

Based on the previously designed adaptive observer,
we design two kinds of feedback linearization
controllers for the torque and flux control of induction
motors. Taking into account the mechanical outputs of
induction motor and the power that is transformed
into magnetic energy and then accumulated into the
induction motor, etc, the estimates of motor torque
and airgap flux can be obtained as follows.

A 3P ~ s,
Te = T(ﬂdalqs - /’anlds ),
(13)

~2 ~2
/Ia = //tda + /lqa.

Define the error between the reference torque and
the torque estimate as e; and the error between
estimated flux and its reference as e,.

(14)

(15)

Differentiating these errors leads to

d 3P, d~ d
Ee] = T(qu ar ﬂda + ﬂ«dg dt lds*

~Aga

dt

d . d
Elds)_;tTe_ref’

Ao Wi-lo)y
dr 2

a T

L2~ Ly) g

2Ly —Lo) 5
L

Rs (lds /’Lda + lqs ﬂzqg)
ag

2L, ~ A A
— 22 Ry {(Ada — Ly )Ada + (Aga —

L.L

rto
_ 2Lls (Lls — LO')
L

Lypiye)Aqa}

- ids iqa) - /Iref

17

a), (iqs ﬂyda

g

By using (3) and (6), (16) can be rewritten as

d

=
1 .5

+L_ {(Lls _Lo)lds +/1da}V;]

o (18)

L]s

LL,

-

—L, iy + AV

Rr { (/ida - Lmids )iqs
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L,
—w
i (4

(o2

- (j’qa ‘™ qs )lds }

_ LIs (Lls — LO')

qa qs + ﬂ’dalds)

2 2
w (i, +zqs)

La
L -L, A
>, (ldsﬂ“da +lds/1q) (lqs da ldsﬂ'qa)
( m qs) (/q’da L lds)
Lr Lo. & da L L Rr

d da+ qa qa)]

e ref*

(el

By applying the feedback linearizing control
approach to (17) and (18), the control inputs ¥V, V is
designed to satisfy the equation

1 N 1 .
~—{(Ly =L digs + Aga Vs +—{(Lys — Ly iy, + Ada Vg
LO' LO'
=841+ 842, (19)
2L~ L)~ 2L, — L
ey, -2 te)5 - g o)
(e LO'

where g4, gn, and g, are designed in order to deal
with some directly removable terms. g, and g,; are
designed as in (21) and (22), with ¢, and ¢, as positive
value, while g, will be determined later. «

Ly 5 .~ A L
8a1 = ; R, {(Ada _Lmlds)lqs - (/”vqa _Lmlqs)lds}
Lo
L ~ ~ L (L, - L . o
+5 g, (Aqaiys + Adaiys) +M——°)a)r (lﬁs +ig)
o o
L A
Is — PN (lds}“da +l ﬂ,qg)+ (lqsﬂ,da I qa)
o L,
_ (lqa - Lmiqs) }\?r;i " (ﬂda - Lmids ﬁr iqa
LI v Lo
@, ~2 ~2 2 -
+i(ﬂ,da +ﬂ,qa)—clel +3_PT'e,ref' (21)‘
2L, - L,
gl = _(I—SL—)RS (igs ﬂ'dﬂ + g ﬂ“t]a)

(o

2y 5 G4 )
" ZS Ry {(ﬁda _Lmlds)ld” +(ﬂ¢qa —Lmlqs)lqa}

r=oc
2L, (L, - L ~ ~ ~
+ %a)’. (iqs ﬂda - idS ﬂqa) + /lref - 02(22.
(e}

(22)

The equations (18), (19), and (21) yield

d 3P R, .2

i [ ce - 7, o (g Ada — igy Aga) (23)
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(Zda zqa - j«qa zda)

L.L

r-o

L,R 2 -
o (l'dsﬂ’qa _lqsﬂ'da)

o

—&(zdazda + zqazqa) + 82l

c

Similarly to the observer design, by using (9), (23)
is expressed as

d
|
dt

3P

R, PN
= —[ ae ——{(, § Ada — igs Aqa)
Lo-

R, .~ .5
—r(lds ﬂqa “lgs idﬂ)

r—o

- - L
— 0, (Adal g + Agalyo) +
, S or Cl 3 1A
+ (g Adalys + Ly Agalys + Ada § Rolaselt
(o3

+ga [ R Rty =2 Gazy + Agaz,)

O'
R - N
LVLO' 1 v
- - R~
———Adgal,, ~ Agal y )+ ——{ Az
11, Aelos = Aaala) 0 ~haze o

- }«qa Zd — Lls (}'daiqs + iqaids)

~ A A A
+ Ada -[O Rsiqsdt - ﬂ’qa JO Rsidsdt} + gd2]'
By choosing g, as
4] 27 2T
8a2 = _z‘r‘(Lls ﬂdalds + Ly Aqalqs
g
- A ~ ¢ A~
+ Ada [ Re Lsclt + Aga [, Rs 1yyd)

w. ~ ~ -~ A' -~ N -~ N
+ L—’(/lda zd + AgaZy + Adafy + Aqal,)

0 25)
R - Re 5 .
+ (ﬂ'dalqs _ﬂqalds)— L {ldazq
LVLO' r-oc
- iqaéd - le (/?,da; + lqg‘lrds)
+ Ada j Rsiydt — Aga j Riigdr},
(24) can be rewritten as
d 3P R, .~ .
E 1 27[_0161 __—S{(lqs Ada _ldsj’qa)
7 (26)
~ @, (Adal g + Agal 4 )} ~ —/1d077d
O'
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L, LL, LL, — D T
~ ~ (e} r-c
R - > R, N .
= Cldal g~ Aqal ) + (L, (iys Aga ~(igs — 0,145 I
LrLO' rtoc - 5, 2 -,
L I A L, LI,
—i sAda)+(Adazq _ﬂ“qazd)_Lls(ﬂdalqs + Agalyg) S
D D (ldalqs -/Lialds)
+Ada j Ryiyydt = Aga j Ryigdt}]. 3 4~ LI,
| 0 0 0
The equations (17), (20), and (22) then yields 7
d LRIi 0 0 Z)_r
—ey, =—Cye 27 r~o o
5270 27)

0 & - 0
which is globally asymptotically stable. The equations L.L, L, )
(26) and (27) will be used as error dynamics to design
the adaptive law in the next section. R ) R, I L) o - L)

Accordingly, the two actual control input vector for L.L, “ L.L, ¢ o ¢ - “
torque and flux control in (19) and (20) can be 0 0 0
rewritten in a vector form as follows. .

L ldS +Zd +—J. Rsldsdt}

{ +Zq + J. Rslqsdt}
Ada

(Lls - LG )iqs + ’1‘1" _(Lls - LO‘ )ids — Ada :||:Vds}

(Lys — L) Ada (L —Lo)Aga | Vas
ga1 +8az LL
-1 .28
O{ 841 } (28) ( lds/’iqa)nLa) (/qua[ds +ﬂ,qal )
L, ’
4. ADAPTIVE LAW DESIGN AND S A s
CONVERGENCE ANALYSIS p, = Ll taa “lgy Ada) +(Adizq = AguZq)
LL,

In this section, the overall adaptive law is designed I 2 (g, N LA
to achieve the asymptotical stabilli)ty of the whole frror —Lyy(Adatys + Aqalys) + Agq .[o Rylgsdt = g I 0 Ryiqdt}
dynamics including adaptive observer’s estimation L.L ’
error, torque control error, and flux control error. The
error dynamics in (12), (26), and (27) can be
expressed in the following matrix form.

(29)
The overall adaptation law by using Lyapunov’s
direct method, is proposed as

e=Ae+wTo, §=-TWe, (30)
rd s T
= |:lds lqs ¢ 62] ’

0=[R, R R z; z, ny nq]T,

L.L
where I =diag [Lays LL,y, LyLyg %7,2

7

B T L.L
9:[1&5 R R 2, %, 7y nq] , }“72 Lyyy Lay,,},and Yrs Vss YR Y20 7y
s
—ky - LR, 0 0 0 are positive gz?ins. Since R.S, R,, R are fixed constants,
Lils R =—R,, R, =—-R., R=-R hold. Considering
de 0 —ky —% 0 0 zg=—Lifq, 2, =—L;f, from (8), the adaptation
e ’ law for & is equivalently expressed as
3P
0 0 —701 0
0 0 0 ¢ O=TWe+[0 0 0 -L f, —L.f,

wT = 7y —Aue) ~7.G,~ Al . 31)
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(31) can also be expressed in terms of each parameter
as follows.

fes =V {(ids + a)rlqs);ds + (iqs - a)rlds);qs

+{(igy Ada — igy Aga) ~ @, (Rdal gy + Agaly)}er},
Rr = 7, Glda = Ligs + 24 + [} Roiget)iy

+ Qg = Liys + 2+ [ Roigydt),

+4{L,, (i Aga — lgs Ada) + (zdafq —Agazd)

~ - ~ -~ ~ t~
~ Lig(Adaly + Aqatgs )+ Ay jo Rgigdt
-~ A~
— Aga jORsidsdr}el],

R= =7 RAU gslgs + Lysigs) + (/Aldaqu ~ Agal )},

tg ==Ly Sy + 7, (g~ Aga®) »

Gy==Lify 7. (s + Ada®)

fia =72 (gs = Aqa@) — ¥y, (s + Adaer)

By = —7- s + Ada€y) + ¥y, (g — Aqaer) - (32)

The convergence of the overall error system is dealt
with in Theorem 1 based on the following two
Assumptions.

Assumption 1: Stator current, stator voltage, rotor
flux, rotor velocity, and the integration of stator
current, are bounded.

Assumption 2: For some positive g, a,, reference

signals WByor (1), }“a|ref (¢) are bounded C' functions

with bounded derivatives such that

tli)rg @y (1) = |,1s|ref (H2a, >0, Vt>0.

Remarks 1: In most cases, when the induction
motor is in steady-state, the state currents iz, iy

become sinusoidal signals. Therefore, after transient
period, it is natural to assume that their integrations
are bounded. If the input frequency of the motor is
maintained to be equal to zero, the state currents are
DC. So their integrations may diverge. In this case,
the integration values can be saturated by controller or
the adaptation can be held on temporarily.

Theorem 1: Under the Assumptions 1 and 2, if the
estimates for flux and current are given in (6), the
control inputs are generated by (28), and the overall
adaptive law is given as (32), then

. A il T 3
i) BeLw,e:[zds lys € ez] el,NL,, lime

t—0o0

=0.

ii) If the persistent excitation condition is satisfied,

the equilibrium point éz[ﬁs R R %, Z,

T .
7 ﬁq] =0 is asymptotically stable (i.e.,

lim 4 = 0).
t—w
iii) Te—f"e €Ly, |/1a|—/ia € L,. Furthermore, if

the persistent excitation condition is satisfied, then
lim R, =0, lim R, =0, lim(T, -7, ,,;)=0, lim
f—w -

t—o t—0 t—w

(Al =Vl o) =0, lim 2, =0, lim 7, =0.

Proof:
i) Define a Lyapunov function candidate and its
derivative as follows.

V= leTe + lérf_lé,
2 2
dy_ l{eTe' +él e} +l{€~TF‘1§ ++0TT716)
dt 2 2
=l de+ 6 We+6'T716.

Applying (30) leads to
Ay o ge<o,
dt

~ T ~
Therefore, e= [ids U— ez] el N, 8cl,.
Next, we show that W is bounded. Considering (15),

we obtain /ida el,, A, €l,. From the fact that

w0 > “ga
R, R, R, R €L, ,we obtain IQS, R €L,. From
(2) and Assumption 1, A;, € L, ﬂqa e L. So, an,

Agqa € Ly, holds. From (8) and Assumption 1, zj,
z,eL,. Since 9~EL00 means Zy, z, € L,, we

q
obtain Z,, Z,€l,. Therefore, D, D,, D5, Dy

e L, . Now by using Assumptions 1 and 2, and the
fact that Dy, Dy, Dy, Dy €L, Wis bounded. ¢ is

also bounded by (29). Barbalat’s Lemma [20] is then
applied to obtain lime=0.

f—0

ii) Refer to [20, pp. 367-370].

iii) The relation (33) shows [T, - 7,|e L., |2,|-
ﬂ:a el
. 3P, - -
I,-T, = —(lqsﬂ’da - ldsﬂqa)’
2 (33)

I}“a| ~|Aa| = ’ida (g + j:afa) + iqg (Aga + an).




Adaptive Feedback Linearization Control Based on Airgap Flux Model for Induction Motors 421

If persistent excitation condition is satisfied, ﬁr =0,
1~?S =0 hold by ii), and applying this to (7) leads to

d - Ly = L, =
i L R, +L—“a),/1da. (34)

r—c (2

Define Lyapunov-like function candidate as V,

Lz A
_E(/tda +/1qa). Then its derivative 1is EVH =

Ll Rr 72 72
~ (B + )
r—c
Therefore, [ﬂ:da, /ianeLw NL,. Since 1, and

)iqa are also bounded from (34), tli_)lg Ags =0, ;anolo ﬂ:qa

=0 is obtained by using Barbalat’s Lemma [20].
Therefore, by using (33), lim(7, - 72) =0 and lim
t—w

t—w0

(4] -|4)=0. Since lime = lim(Z, ~7,)=0 and
t—0 {—w0

lim e, = lim (A, |~ A, ) =0 in i), im(T, -7, )

[—w® t—w t—w -

=0 and lim (|/1,1| —Aer) =0 are obtained. 0
t—0

In order to prevent the rotor and stator resistances
from becoming negative, the projection algorithm is
used as

R if Rep>0,
I%,,p = or if IAQr,p =0 and f?, >0,
0 if Rrp=0 and R, <0,
R, if Rsp>0,
R, ,= or if Ryp=0 and R, >0, (35)
0 if Rsp=0 and R, <0,
R if Rp>0,
f(’p= or if fep=0 and R>0,
0 if Rp=0 and R<0.

By using this algorithm, the estimates of stator and
rotor resistances are maintained as non-negative
values.

Remarks 2: Simulation results will show that the
persistent excitation condition is actually satisfied.

Since W7 contains the signals iy, I;s » persistence

excitation condition requires that the frequency of
igs> lIgs 1s sufficiently rich, making the rows of w" to

be independent of one another in the interval [z,#+T].

The first five rows of W' are independent because of
the currents with sufficiently rich frequency, while the
remaining two each row needs at least one oscillation
in the interval [£,7+T], to be independent of each other.

Remarks 3: If motor velocity @, is constant,

IWWTdt cannot be guaranteed to be positive definite.

In this case, we need the following extended persistent
excitation condition. Define new variables as

R, . o
= Z;+—L7,,
Sd L 4t g 6
£ =15, -2y,
T LL, YL,

By using the adaptive law (30), the error dynamics
is

d R ﬂ)z I A

E@ ==(y, ﬁ ¥y L_r)(lds - iqael )

o
a) ~ n

— & =~ (v, 7, = Wiy — Aag@)-

dt ™! frr, ‘"p, T ™

Now (29) can be rewritten by using &, &, as

é=Ae+ W{Téé: s
e . T (3%)
0§ :[Rs Rr R ‘fd 5qj| H
T _
W:.f =
_<ids +a)rlqs) _ 1y 1 0
I, LL,
—\i—o.d 1
( gs df) D, _tgs 0 |
L, LI,
(Zda]qs — j«qa]ds) ~ ~
D3 D4 [ — _/Iqa Ada
LL,
0 0 0 0o 0|

where Dy, D, D3, D, are the same as in (29). If there
T
exist 7>0, ¢>0, such that LH WCJK(T)WSET (n)dr 2

cl >0 forany >0, éé: is guaranteed to converge
to zero. In other words, if @, is constant, it is not
guaranteed that Z,, Z,, 7j;, 7, converge to zero.
But if the persistent excitation of W is satisfied, the
convergence of R., R, R is guaranteed. If
1§r :135 =0, the flux converges to its actual value,

and its magnitude and torque also track their reference
values, by iii) in Theorem 1.
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5. SIMULATIONS

Table 1 shows the motor specification used in the

Table 1. Induction motor specification.

400W, 220V, 60Hz, 4 poles, max-speed 1690r/min
R, |33 Q L 99.0 mH
R 310 J 0.003 kgm’
L 104.4 mH Max-flux 0.45 Wb
L, 104.4 mH Max-torque | 2.2 Nm
2000
= 1500 F q
% 1000 1
§ 500
UD U.‘1 0.2 CI.‘3 D.Id DIS 0.6 Dj7 D.’B D.I9 1
08
—O8f
g 0.4}
u_:_ 02
0

0 01 0.2 03 0.4 0.5 0.6 07 08 03 1
time [sec]

(a) References and actual values of motor-velocity
(@, ) , magnitude of flux (|la|).

6

1l

Rr [Ohm]
q

21

Rs [Ohm]

L n " s s s " " n
o] 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
time [sec]

(c) Estimates of rotor resistance (1%,) and stator

resistance (ﬁs )

ldss error [A]
(=]

a1 0.2 0.3 0.4 0.5 0.6 0.7 08 09 1

lgss error [A]
o

0.1 0.2 0.3 0.4 05 06 a7 0.8 0.9 1
time [sec]

() d, g-axis current error (i, %,s)-

Fig. 1.
(R.(0)=R.x1.5, R (0)=R,x0.5).

simulation. We used a PI controller for speed control
and the output of the torque reference was applied to
the controller. The initial error of the rotor resistance
and stator resistance were set to -50% and +50%,
respectively. The reference value of speed was
increased up to 1800r/min at 0.2s. The simulation
results, as shown in Fig. 1, demonstrate that as the
stator current error and airgap flux error converged to
zero with properly bounded voltages (See Fig. 1(e),
1(d) and 1(f)), the resistances of stator and rotor
converged to their actual values(See Fig. 1(c)), Torque

Te ef [Nm]

i} 0.1 0.2 03 0.4 0.5 0.6 0.7 0.6 08 1

Te [Nm}

(] 0.1 0.2 0.3 0.4 0.5 0.6 07 08 09 1
time [sec]

(b) Torque reference (7., and actual torque 7.

300

200
5 100
@ a
2
= o0f
200 F
300 .
0 01 02 03 04 05 06 07 08 09 1
300
200 g
s 100
é’- a
> 00t
200 F
300 . A A . . . . . .
0 0+ 02 03 04 05 06 07 08 09 1
time [sec]
(d) d, g-axis voltage.
0.4
=
2 o2} g
8
g 0
P
2
g oz} B
=8
0.4 .
0 01 02 03 04 05 06 07 08 03 1
0.4
=
2 o2t g
B
G 0
&
g 02t
5
04 . A \ . . . . . .
D 01 02 03 04 05 0B 07 08 09 1

(f) Airgap flux error (ﬂ:da, /iq a)-

Simulation results of the proposed adaptive input-output feedback linearization controller
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2000

1500 +

1000 |

Wrpm [r/min]
[
]
o

0 01 02 03 0.4 05 06 07 0.8 09 1

Flux [web?]
o
o

o] 0.1 02 03 04 05 0B 07 08 0.9 1
time [sec]

(a) References and actual values of motor-velocity
(@), magnitude of flux (|4,)).

v

B

=

Rr [Ohm]
~N

IS

Rs [Ohm]
N
pa.

s n s : ) L L L s
u} 01 02 0.3 0.4 0.5 0.6 07 o8 09 1
time {sec]

(c) Estimates of rotor resistance (Ii’,) and stator

resistance (f(’s ).

10

F WY Aan,

ldss error [A]
o
N

01 0z 0.3 04 05 06 07 08 09 1

lgss error [A]
o
S
4

v
-5

0.1 02 a3 0.4 05 06 07 0.8 0.9 1
time [sec]

(e) d, g-axis current error (i, qu ).

Te ef [Nm|
(=]

a 01 02 a3 0.4 05 06 07 03 09 1

0.1 02 0.3 0.4 05 06 07 08 09

0

B

4

2

Te [Nm]

o

-2

1
time [sec]

(b) Torque reference (7._,.s) and actual torque (7).
300

200
100 |

Vdss [V]

-100 F
-200 L
-300

300
200 b
100}

Vgss [V}
o

-100 +

-200F

-300
o

L L " " " " " L L
0.1 0.2 0.3 0.4 0s 06 0.7 [sN=) 09 1
time [sec]

(d) d, g-axis voltage.

0.4

02t

021

Lamdas Error [web]
=}

0.4
o

01 02 03 04 05 06 07 08 0.9 1

0.4

0.2}

021

Lamgas Error [web]
o

0.4 " . . n n n n n n
0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1

(f) Airgap flux error  (Zg,, Agq)-

Fig. 2. Simulation results of the proposed adaptive input-output feedback linearization controller (inductance
error: 0.9xL,, 09xL,, 05xL,, Initial resistance erros: R.(0)=R, x1.5, R (0)=R, x0.5).

was controlled efficiently (See Fig. 1(b)), and the
speed and flux converged to their reference values
(See Fig. 1(a)).

With the exception of rotor and resistance errors,
there may be in fact additional errors in real control
systems. If the proposed control algorithm fails due to
a slight change of some other parameters or system

uncertainties, it shall be said to have very low
reliability. In Fig. 2, small changes were made to
mutual inductance (L,,), stator leakage inductance (L)
and rotor leakage inductance (L;) in order to confirm
whether the proposed algorithm works well with the
uncertainties of other parameters. In other words, 0.9*
L, 09%L;, 0.9XL, were adopted to the system,
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(d) Eigenvalue 6,7 w.r.t T.

Fig. 3. Persistent excitation condition test.

instead of L,, L;, L;, and the same controller was
applied. It was founded that the d-¢ axis current errors

(Lggs qu) do not converge but oscillate (See Fig.

2(e)), and rotor resistance (ﬁ,) does not track its
actual value (See Fig. 2(c)). This is a natural outcome

for model uncertainty, but as shown in Figs. 2(a) and
controlled

2(b), the velocity and torque are
independently with slight oscillation, in spite of the

inductance errors. Airgap fluxes were also estimated
well, even though there was oscillation. Some speed

error existed near 0s, which was not seen in
simulations due to scaling. The reason for the speed
error is that flux and torque controller is not
decoupled completely because of modeling
mismatches of R, R, initial errors, or inductance
errors. Based on the results shown in Fig. 2, it is
shown that the proposed control scheme is applicable
to actual systems with some inductance uncertainties.
Now we will present our simulation results that
show whether or not the persistent excitation
condition can be satisfied. Since it is very difficult to
test the persistent excitation condition analytically, we

T
tested whether LH W(T)WT(T)dT remains positive

definite for any ¢#>0. In this simulation, the

T
eigenvalues of J;H W(r)WT(r)dr with =0 actually

remained positive over 7 =[0,1] (See Fig. 3). As can

be seen from Fig. 3, Some eigenvalues looks like they
are close to zero, but, considering the scaling, they are
actually positive.

t+T T . .. .
Therefore L W)W (r)dr is positive definite,

which in turn brings us to the conclusion that the
persistent excitation condition is satisfied in the
simulation.

6. EXPERIMENTS

In the experiment, two induction motors were used
in the same way as in the simulation in order to
evaluate the practical efficiency of the proposed
controller. The sampling period of torque and flux
controller was 200us, that of speed controller was 3ms
the inverter switching frequency was 2.5Khz, the dc-
link voltage was 310V, and DSP was TMS320C40
which has 40MFLOPS (mega floating point operation
per second). As shown in Fig. 4, the proposed method
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L IGRT Inverter
A
S,.8,.95, £
GaeDriver | AD Cauntar Courger [ wD [ Gate drver
el 4 /A bsp Dia
RA,,)%J < speed control :F) Flux, TorqueVector Control
Flux, Torque: proposed rne!thud

Fig. 4. Experimental environment for the evaluation
of the proposed method.

was used for the left motor, while the direct-vector
control method was used for the right one to generate
load torque. The load torque 1Nm was applied at 1.4s
to see load response in experiment. Experimental
results are presented in Figs. 5. and 6.

Fig. 5 presents the experimental results where there

1000

200 /
0

0z 0.4 0B 08 1 1.2 1.4 1.6 1.8 2

Motor speed [/min]
=
[}
(=}

[§)
T

i M
[ ]

Torque {Nm]

Q
y

2

a 02 0.4 o 08 1 1.2 1.4 16 1.8 2
time [sec]

(a) References and actual values of motor velocity

(a),pm) and estimate of torge (fe).

o 0.2 0.4 06 0.8 1 1.2 1.4 16 18 2

Rs [Ohm]

0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2
tirne [sec]

(b) Estimates of rotor resistance (1%,) and stator
resistance (Iés).

Fig. 5. Experimental results of the adaptive input-
output linearization controller with no initial

errors (R.(0)=R,, R,(0)=R,).

exist no initial errors about rotor and stator resistances.
Initial motor velocity reference is Or/min and is
increased up to 500r/min with 3r/min of slope. It can
be seen from this figure that the estimates of the
resistances do not go far from their actual values, and
the velocity and torque are successfully controlled.

In Fig. 6, the situation is worse. There is stator

resistance error of -50% (i.e.]%, {0)=R.x0.5), rotor

resistance error of +50% (i.e. ﬁS(O):RS x1.5), and
mutual inductance error of +10% (i.e.1.1L,). In

addition, the velocity and torque controller works
fairly well, while the estimates of the resistances of
the stator and the rotor converge to their actual values,
in spite of the initial errors.

When the mutual inductance error was increased
further, the control failed as expected. But this is the
kind of problem that can be observed in any control
scheme that uses induction motor models. In order to

1060

Motor speed [r/min]
N b
Q Q

o o o
T

0.2 04 06 08 1 12 1.4 16 18 2

Torgue [Nm]
o N

et et A e
Lan L

-2

g} 0.2 0.4 8.6 0.8 1 1.2 1.4 16 1.8 2
time [sec]

(a) References and actual values of motor velocity

(a)rpm) and estimate of torqge (7).

m

'S

Rr [Ohm]
[N}

ul az 0.4 06 0B 1 1.2 1.4 1.6 1.8 2

Rs [Ohm]

o 0.2 0.4 06 0.8 1 1.2 1.4 16 1.8 2
time [sec]

(b) Estimates of rotor resistance (1%,) and stator
resistance (f?s).

Fig. 6. Experimental results of the adaptive input-
output linearization controller with initial

errors (R.(0)=R. x0.5, R.(0)=R, x1.5,1.1L,,).
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(b) Estimates of rotor resistance (1%,) and stator

resistance (1%3 ).

Fig. 7. Low-Speed experimental results of the adaptive
input-output linearization controller with

initial errors (R.(0)=R,x0.5, R,(0)=R,
x1.5,1.1 L,,).

validate the efficiency of the controller at low speed
operation, therefore, motor velocity was reduced to
50r/min. The results are shown in Fig. 7. It can be
seen that the control works, but there still exist steady-
state estimation errors. This is due to the stator voltage
error which is relatively high at low speed operation.
These experimental results show that the proposed
scheme can be adopted into actual plants.

7. CONCLUSION

In this paper, we proposed an adaptive feedback
linearization control scheme for induction motors with
unknown rotor and stator resistances. Since the two
existing typical modeling techniques, i.e., rotor flux
model and stator flux model, entails structural
complexities when they are combined into an overall
control system with adaptive observer and feedback-
linearizing controller, we proposed an airgap fluxe

model to overcome this problem.

We developed a successful controller and observer
design method that shows relatively less structural
complexity. The feedback-linearizing controllers for
torque and flux control were designed and then
merged to derive the overall adaptive law taking into
consideration all the error dynamics. This adaptive
law was analyzed to show overall convergence.
Through Lyapunov-based theoretical analysis,
computer simulation, and actual experiments, we were
able to demonstrate that the estimates of stator and
rotor resistances converge to their actual values, flux
is estimated efficiently, and torque and flux can be
controlled independently. The convergence analysis
were performed under persistent excitation condition
and this condition was actually satisfied in simulations.
These results confirm that the proposed adaptive
feedback linearization control scheme is applicable
both in theoretical and practical senses.
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