Browse > Article

Effects of Boride on Microstructure and Properties of the Electroconductive Ceramic Composites of Liquid-Phase-Sintered Silicon Carbide System  

Shin, Yong-Deok (공과대학 전기공학과)
Ju, Jin-Young (공과대학 전기공학과)
Ko, Tae-Hun (공과대학 전기공학과)
Publication Information
The Transactions of The Korean Institute of Electrical Engineers / v.56, no.9, 2007 , pp. 1602-1608 More about this Journal
Abstract
The composites were fabricated, respectively, using 61[vol.%] SiC-39[vol.%] $TiB_2$ and using 61[vol.%] SiC-39[vol.%] $ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H, 3C), $TiB_2$, $ZrB_2$ and $YAG(Al_5Y_3O_{12})$ crystal phase on the Liquid-Phase-Sintered(LPS) $SiC-TiB_2$, and $SiC-ZrB_2$ composite. $\beta\rightarrow\alpha-SiC$ phase transformation was occurred on the $SiC-TiB_2$ and $SiC-ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 249.42[MPa] and 91.64[GPa] in $SiC-ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[\Omega{\cdot}cm]$ for $SiC-ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the lowest value of $1.319\times10^{-3}/[^{\circ}C]$ for $SiC-ZrB_2$ composite in the temperature ranges from $100[^{\circ}C]$ to $300[^{\circ}C]$ Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.
Keywords
$YAG(Al_5Y_3O_{12})$; Liquid-Phase-Sintered(LPS); Electroconductive Ceramic Composite; PTCR; Transition Metal $TiB_2$; $ZrB_2$;
Citations & Related Records

Times Cited By SCOPUS : 6
연도 인용수 순위
1 Y. K. Park, J. T. Kim and Y. H. Baik, 'Mechanical Properties and Electrical Discharge Machinability of ${\beta}-Sialon-TiB_{2}$ Composites' J. Mater. Sci. Korea, 5[1], pp. 19-24, 1999
2 F. Monteverde and A. Bellosi, 'Oxidation of $ZrB_{2}$-Based Ceramics in Dry Air', Journal of The Electrochemical Society, 150(11). pp. B552-B559, 2003   DOI   ScienceOn
3 Mark M. Opeka, Inna G. Talmy, Eric J. Wuchina, James A. Zaykoski and Samuel J. Causey, 'Mechanical Thermal, and Oxidation Properties of Refractory Hafnium and Zirconium Compounds', Journal of the European Ceramic Society, 19. pp. 2405-2414, 1999   DOI   ScienceOn
4 Peterson, I. M. and Tien, T. Y., 'Effect of the Grain Boundary Thermal Expansion Coefficient on the Fracture Toughness of Silicon Nitride', J. Am. Ceram Soc., 78[9], pp. 2345-2352, 1995   DOI   ScienceOn
5 Frederic Monteverde, Stefano Guicciardi and Alida Bellosi, 'Advances in Microstucture and Mechanical Properties of Zirconium Diboride based Ceramics', Materials Science and Engineering A, 346. pp. 310-319, 2003   DOI   ScienceOn
6 Guo-Jun Zhang, Zhen-Yan Deng, Naoki Kondo, Jian-Feng Yang and Tatsuki Ohji 'Reactive Hot Pressing of $ZrB_{2}$-SiC Composites' J. Am Ceram. Soc., 83[9], pp. 2330-2332, 2000   DOI   ScienceOn
7 L. J. Van der Pauw, 'A Method Measuring Specific Resistivity and Hall Effect of Discs of Arbitrary Shapes' Philips Research Reports, 13[1], pp. 1-9, 1958
8 N.P. Padture, 'In Situ-Toughened Silicon Carbide' J. Am. Ceram. Soc., 77[2], pp. 519-523, 1994   DOI   ScienceOn
9 J. Y. Kim, Y. W. Kim, Mamoru Mitomo, G. D. Zhan and J. G. Lee, 'Microstructure and Mechanical Properties of ${\alpha}$-Silicon Carbide Sintered with Yttrium-Aluminium Garnet and Silica', J. Am. Ceram. Sac., Vol. 82[2], pp. 441-444, 1999   DOI   ScienceOn
10 Cathleen Mroz, 'Titanium Diboride' J. Am. Ceram. Soc., Bull., 74[6], pp. 158-159, 1995
11 L. J. Gibson and M. F. Ashby, 'The Mechanics of Three-Dimensional Cellular Materials' Proc. R. Soc. London A382, pp. 43-59, 1982
12 J. H. She and K. Ueno., 'Densification Behavior and Mechanical Properties of Pressureless-Sintered Silicon Carbide Ceramics with Alumina and Yttria Additions', Materials Chemistry and Physics., 59, pp. 139-142, 1999   DOI   ScienceOn
13 Y. D. Shin, J. Y. Ju, K. S. Choi, S. S. Oh and J. H. Seo, 'Effect of Annealing Temperature on the Properties of ${\beta}-SiC-TiB_{2}$ Electrocondutive Ceramic Composites by Spray Dry', Trans. KIEE, Vol. 52C, No.8, pp. 335-341, 2003
14 Patricia A. Hoffman, 'Thermo Elastic Properties of Silicon Carbide-Titanium Diboride Particulate Composites', M. S Thesis, Pennsylvania State Uni., 1992
15 S. H. Yim, Y. D. Shin and J. T. Song, 'The Properties of ${\beta}-SiC-TiB_{2}$ Electroconductive Ceramic Composites Densified by Liquid-Phase Sintering', Trans. KIEE, Vol. 49, No. 9, pp. 510-515, 2000
16 D. Sciti, S. Guicciardi, A. Bellosi, 'Effect of Annealing Treatments on Microstructure and Mechanical Properties of Liquid-Phase-Sintered Silicon Carbide', Journal of the European Ceramic Society, 21. pp. 621-632, 2001   DOI   ScienceOn
17 Lee, J. K., Tanaka, H. and Kim, H., 'Movement of Liquid Phase and the Formation of Surface Reaction Layer on the Sintering of ${\beta}$-SiC with an Additive of Yttrium Aluminium Garnet', J. Mat. Sci., 15. pp. 409-411, 1996   DOI
18 K. Strecker, S. Ribeiro, R. Oberacker and M. J. Hoffmann, 'Influence of Microstructural Variation on Fracture Toughness of LPS-SiC Ceramics' International Journal of Refractory Metals & Hard Materials, 22, pp. 169-175, 2004   DOI   ScienceOn
19 F. Monteverde, A. Bellosi and S. Guicciardi, 'Processing and Properties of Zirconium Diborideased Composites', Journal of the European Ceramic Society, 22. pp. 279-288, 2002   DOI   ScienceOn
20 J. Ihle, M. Herrmann and J. Alder, 'Phase Formation in Porous Liquid Phase Sintered Silicon Carbide: Part III: Interaction between $Al_{2}O_{3}-Y_{2}O_{3}$ and SiC', Journal of the European Ceramic Society, 25, pp. 1005-1013, 2005   DOI   ScienceOn
21 Ming-Jen Pan, Patrica A. Hoffman, David J. Green and John R. Hellmann, 'Elastic Properties and Microcracking Behavior of Particulate Titanium Diboride-Silicon Carbide Composites' J. Am. Ceram. Soc., 80[3], pp. 692-698, 1997   DOI   ScienceOn
22 Neil N. Ault and John T. Crowe, 'Silicon Carbide' J. Am Ceram Soc., Bull., 74[6], pp. 150-151, 1995
23 Y. D. Shin, J. Y. Ju, J. S. Kwon, 'Electrical Conductive Mechanism of Hot-pressed ${\alpha}-SiC-ZrB_{2}$ Composites', Trans. KIEE, Vol. 48C, No. 2, pp. 104-108, 1998
24 D. Sciti and A. Bellosi, 'Effects of Additives on Densification, Microstructure and Properties of Liquid-Phase Sintered Silicon Carbide', J. Mat. Sci. Lett., 35, pp. 3849-3855, 2000   DOI   ScienceOn
25 Weimin Wang, Zhengyi Fu, Hao Wang and Runzhang Yuan, 'Influence of Hot Pressing Sintering Temperature and Time on Microstucture and mechanical Properties of $TiB_{2}$ Ceramics', Journal of the European Ceramic Society, 22. pp. 1045-1049, 2002   DOI   ScienceOn
26 Frederic Monteverde and Alida Bellosi, 'Beneficial Effects of AIN as Sintering Aid on Microstructure and Mechanical Properties of Hot-pressed $ZrB_{2}$', Advanced Engineering Materials, 5[7], pp. 508-512, 2003   DOI   ScienceOn
27 Stanley R. Levine, Elizabeth J. Opila, Michael C. Halbig, James D. Kiser, Mrityunjay Singh and Jonathan A. Salem, 'Evaluation of Ultra-High Temperature Ceramics for Aeropropulsion Use', Journal of the European Ceramic Society, 22. pp. 2757-2767, 2002   DOI   ScienceOn
28 Carl H. Mcmurtry, Wolfgang D. G. Boecker. Srinivasa G. Seshadri, Joseph S. Zanghi and John E. Garnier 'Microstructure and Material Properties of SiC-$TiB_{2}$ Particulate Composites', Am. Ceram. Soc. Bull., 66[2], pp. 325-329, 1987
29 J. B. Hurst and S. Dutta, 'Simple Processing Method for High-strength Silicon Carbide', J. Am. Ceram. Soc., 70[11], pp. C303-C308, 1987
30 Mylene Brach, Diletta Sciti, Andrea Balbo and Alida Bellosi, 'Short-Term Oxidation of a Ternary Composite in the System $AlN-SiC-ZrB_{2}$', Journal of the European Ceramic Society, 25. pp. 1771-1780, 2005   DOI   ScienceOn
31 Kim, J. Y., Kim, Y. W., Lee, J. G., and Cho, K. S., 'Effect of Annealing on Mechanical Properties of Self-reinforced alpha-Silicon Carbide', J. Mat. Sci., 34. pp. 2325-2330, 1999   DOI   ScienceOn
32 Cathleen Mroz, 'Zirconium Diboride' J Am. Ceram. Soc., Bull., 74[6], pp. 164-165, 1995
33 Diletta. Sciti, Cesare. Melandri and Alida Bellosi, 'Properties of ZrBz-Reinforced Tenary Composites', Adanced Engineering Materials, 6[9], pp. 775-781, 2004   DOI   ScienceOn
34 Oyelayo O. ajayi, Ali Erdemir, Richard H. Lee and Fred A. Nichols, 'Sliding Wear of Silicon Carbide-Titanium Boride Ceramic-Matrix Composite' J. Am. Ceram. Soc., 76[2], pp. 511-517, 1993   DOI
35 Y. W. Kim, W. J. Kim and D. H. Cho, 'Effect of Additive Amount on Microstructure and Mechanical Properties of Self-reinforced Silicon Carbide', J. Mater. Sci. Lett., 16. pp.1384-1386,1997   DOI   ScienceOn
36 Y. H. Koh, S. Y. Lee and H. E. Kim, 'Oxidation Behavior of Titanium Boride at Elevated Temperatures' J. Am. Ceram. Soc., 84[1], pp. 239-241, 2001   DOI   ScienceOn
37 G. J. Zhang, X. M. Yue, Z. Z. Jin and J. Y. Dai, 'In-situ Synthesized $TiB_{2}$ Toughened SiC', Journal of the European Ceramic Society, 16. pp. 409-412, 1996   DOI   ScienceOn
38 G. J. Zhang, Z. Z. Jin and X. M. Yue, 'Reaction Synthesis $TiB_{2}$-SiC Composites from $TiH_{2}$-Si-B4C', Materials Letters, 25. pp. 97-100, 1995   DOI   ScienceOn
39 Ken Takahashi and Ryutarao Jimbou., 'Effect of Uniformity on the Electrical Resistivity of $SiC-ZrB_{2}$ Ceramic Composites', J. Am. Ceram. Sac., 70[12], pp. C369-C373, 1987
40 Hong Zhao, Yu He and Zongzhe Jin, 'Preparation of Zirconium Boride Power' J. Am. Ceram. Soc., 78[9], pp. 2534-2536, 1995   DOI   ScienceOn
41 Yuklnori Kutsukake 'The Development of $ZrB_{2}$-ased Cermert' Ceramic Data Book, pp. 687-703, 1987
42 Hideto Hashiguchi and Hiasshi Kimugasa, 'Electrical Resistivity of ${\alpha}$-SiC Ceramics Added with NiO' J. Ceram. Sac. Japan, 102[2], pp.160-164, 1994   DOI