Browse > Article
http://dx.doi.org/10.22807/KJMP.2022.35.4.423

Anisotropic Compression Behavior and Phase Transition of Sepiolite Under Moderate Pressure Conditions  

Seohee, Yun (Department of Earth System Sciences, Yonsei University)
Yongjae, Lee (Department of Earth System Sciences, Yonsei University)
Publication Information
Korean Journal of Mineralogy and Petrology / v.35, no.4, 2022 , pp. 423-430 More about this Journal
Abstract
Pressure-dependent elastic behavior and chemical reaction of natural sepiolite (Mg8Si12O30(OH)4·12H2O) was studied under two different pressure-transmitting medium (PTM) conditions using synchrotron X-ray powder diffraction. Under non pore-penetrating silicone oil PTM, we observed that the b-axis length increases up to ca. 3.6 GPa, marking an anisotropic compression region with negative linear compressibility of βb= -0.0012 GPa-1, which then decreases at 7.7 GPa. Under pore-penetrating water PTM, the anisotropic compression behavior is enhanced with doubled negative linear compressibility of βb= -0.0025 GPa-1 up to 3.2 GPa, where transformation into stevensite is observed upon ex-situ temperature treatment at 280 ℃ as confirmed via XRD and SEM. Derived bulk moduli (K0) and linear compressibilities (β) were compared to other structurally and chemically related minerals.
Keywords
Sepiolite; Stevensite; Bulk modulus; Linear compressibility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Angel, R.J., 2000, Equations of State. Reviews in Mineralogy and Geochemistry, 41, 35-59.   DOI
2 Brauner, K. and Preisinger, A., 1956, Struktur und entstehung des sepioliths. Tschermaks mineralogische und petrographische Mitteilungen, 6, 120-140.   DOI
3 Callen, R.A., 2000, Clays of the palygorskite-sepiolite group: depositional environment, age and distribution, Palygorskite-sepiolite: occurrences, genesis and uses. (eds. Singer, A. and Galan, E.), Elsevier, 1-37.
4 Carney, L.L. and Meyer, R.L., 1976, A new approach to high temperature drilling fields. In: SPE Annual Fall Technical Conference and Exhibition, SPE-6025-MS.
5 Chahi, A., Fritz, B., Duplay, J., Weber, F. and Lucas, J., 1997, Textural transition and genetic relationship between precursor stevensite and sepiolite in lacustrine sediments (Jbel Rhassoul, Morocco). Clays and Clay Minerals, 45, 378-389.   DOI
6 Faust, G.T. and Murata, K.J., 1953, Stevensite, redefined as a member of the montmorillonite group. American Mineralogist: Journal of Earth and Planetary Materials, 38, 973-987.
7 Garcia-Romero, E. and Suarez, M., 2013, Sepiolite-palygorskite: Textural study and genetic considerations. Applied Clay Science, 86, 129-144.
8 Guven, N. and Carney, L.L., 1979, The Hydrothermal Transformation of Sepiolite to Stevensite and the Effect of Added Chlorides and Hydroxides. Clays and Clay Minerals, 27, 253-260.   DOI
9 Haines, S.H. and van der Pluijm, B.A., 2012, Patterns of mineral transformations in clay gouge, with examples from low-angle normal fault rocks in the western USA. Journal of Structural Geology, 43, 2-32.   DOI
10 Huggett, J.M., 2015, Clay Minerals. Reference Module in Earth Systems and Environmental Sciences. Elsevier, 358-365.
11 Le Bail, A., Duroy, H. and Fourquet, J.L., 1988, Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23, 447-452.   DOI
12 Mao, H.K., Xu, J. and Bell, P.M., 1986, Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91, 4673-4676.   DOI
13 Moyano, B., Spikes, K.T., Johansen, T.A. and Mondol, N.H., 2012, Modeling compaction effects on the elastic properties of clay-water composites. Geophysics, 77, D171-D183.   DOI
14 Post, J.E., Bish, D.L. and Heaney, P.J., 2007, Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of sepiolite. American Mineralogist, 92, 91-97.   DOI
15 Post, J.L. and Crawford, S., 2007, Varied forms of palygorskite and sepiolite from different geologic systems. Applied Clay Science. 36, 232-244.
16 Toby, B.H, 2001, EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210-213.   DOI
17 Prescher, C. and Prakapenka, V.B, 2015, DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Research, 35, 223-230.   DOI
18 Sanchez Roa, C., Faulkner, D.R., Boulton, C., Jimenez Millan, J. and Nieto, F., 2017, How phyllosilicate mineral structure affects fault strength in Mg rich fault systems. Geophysical Research Letters, 44, 5457-5467.   DOI
19 Sanchez-Roa, C., Vidal, O., Jimenez-Millan, J., Nieto, F. and Faulkner, D.R., 2018, Implications of sepiolite dehydration for earthquake nucleation in the Galera Fault Zone: A thermodynamic approach. Applied Geochemistry, 89, 219-228.   DOI
20 Ueshima, M. and Tazaki, K., 2001, Possible role of microbial polysaccharides in nontronite formation. Clays and Clay Minerals, 49, 292-299.   DOI
21 Vasquez, G.F., Morschbacher, M.J., Dos Anjos, C.W.Di., Silva, Y.M.P., Madrucci, V. and Justen, J.C.R., 2019, Petroacoustics and composition of presalt rocks from Santos Basin. Leading Edge, 38, 342-348.   DOI
22 Yeniyol, M, 2020, Transformation of Magnesite to Sepiolite and Stevensite: Characteristics and Genesis (CAYIRBA I, Konya, Turkey). Clays and Clay Minerals, 68, 347-360.   DOI
23 Wang, Z., Wang, H. and Cates, M.E., 2001, Effective elastic properties of solid clays. Geophysics, 66, 428-440.   DOI