Browse > Article
http://dx.doi.org/10.5764/TCF.2022.34.3.207

Liquid Metal Enabled Thermo-Responsive Poly(N-isopropylacrylamide)Hydrogel for Reversible Electrical Switch  

Lim, Taehwan (Advanced Textile R&D Department, Korea Institute of Industrial Technology)
Lee, Sohee (Department of Clothing and Textiles, Gyeongsang National University)
Yeo, Sang Young (Advanced Textile R&D Department, Korea Institute of Industrial Technology)
Publication Information
Textile Coloration and Finishing / v.34, no.3, 2022 , pp. 207-216 More about this Journal
Abstract
Hydrogels have gained considerable attention in various fields due to their easily transformative ability by different stimulation. In addition, metal-based conductive additives can enable the hydrogels to be conductive with dimension change. Although the development of the additives offered enhanced electrical properties to the hydrogels, correspondingly enhanced mechanical properties may limit the volume and electrical properties switching after stimulation. Here we prepared poly(N-isopropylacrylamide) (PNIPAM) thermo-responsive hydrogel that has a 32℃ of low critical solution temperature and added liquid metal particles (LMPs) as conductive additives, possessing soft and stretchable benefits. The LMPs enabled PNIPAM (PNIPAM/LMPs) hydrogels to be constricted over 32℃ with a high volume switching ratio of 15.2 when deswelled. Once the LMPs are spontaneously oxidized in hydrogel culture, the LMPs can release gallium ions into the hydrogel nature. The released gallium ions and oxidized LMPs enhanced the modulus of the PNIPAM/LMPs hydrogel, triggering high mechanical stability during repeated swelling/deswelling behavior. Lastly, highly constricted PNIPAM/LMPs hydrogel provided a 5x106 of electrical switching after deswelling, and the switching ratio was closely maintained after repeated swelling/deswelling transformation. This study opens up opportunities for hydrogel use requiring thermo-responsive and high electrical switching fields.
Keywords
thermo-responsive; poly(n-isopropylacrylamide); liquide metal; electrical conductivity; property switch; property stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Kim, S. Kim, J. So, K. Kim, and H. Koo, Cytotoxicity of Gallium-Indium Liquid Metal in an Aqueous Environment, ACS Applied Materials and Interfaces, 10(20), 17448(2018).
2 A. Novikov, J. Goding, C. Chapman, E. Cuttaz, and R. A. Green, Stretchable Bioelectronics: Mitigating the Challenges of the Percolation Threshold in Conductive Elastomers, APL Materials, 8, 101105(2020).
3 L. Qiu, D. Liu, Y. Wang, C. Cheng, K. Zhou, J. Ding, V. Truong, and D. Li, Mechanically Robust, Electrically Conductive and Stimuli-Responsive Binary Network Hydrogels Enabled by Superelastic Graphene Aerogels, Advanced Materials, 26(20), 3333(2014).
4 Z. Sun, C. Huang, J. Guo, J. T. Dong, R. F. Klie, L. J. Lauhon, and D. N. Seidman, Strain-Energy Release in Bent Semiconductor Nanowires Occurring by Polygonization or Nanocrack Formation, ACS Nano, 13(3), 3730(2019).
5 S. Wang, Y. Wu, L. Lin, Y. He, and H. Huang, Fracture Strain of SiC Nanowires and Direct Evidence of Electron-Beam Induced Amorphisation in the Strained Nanowires, Small, 11(14), 1672(2015).
6 S. D. K. Seera, D. Kundu, and T. Banerjee, Physical and Chemical Crosslinked Microcrystalline Cellulose-polyvinyl Alcohol Hydrogel: Freeze-thaw Mediated Synthesis, Characterization and in Vitro Delivery of 5-Fluorouracil, Cellulose, 27, 6521(2020).
7 C. Lu, W. Guo, X. Qi, A. Neubauer, Y. Paltiel, and I. Willner, Hemin-G-quadruplex-crosslinked poly-Nisopropylacryl amide Hydrogel: a Catalytic Matrix for the Deposition of Conductive Polyaniline, Chemical Science, 6(11), 6659(2015).
8 R. Contreras-Caceres, L. Schellkopf, C. Fernandez-Lopez, I. Pastoriza-Santos, J. Perez-Juste, and M. Stamm, Effect of the Cross-Linking Density on the Thermoresponsive Behavior of Hollow PNIPAM Microgels, Langmuir, 31(3), 1142(2014).
9 M. A. Daniele, A. A. Adams, J. Naciri, S. H. North, and F. S. Ligler, Interpenetrating Networks based on Gelatin Methacrylamide and PEG Formed using Concurrent Thiol Click Chemistries for Hydrogel Tissue Engineering Scaffolds, Biomaterials, 35(6), 1845(2014).
10 D. Ye, C. Chang, and L. Zhang, High-Strength and Tough Cellulose Hydrogels Chemically Dual Cross-Linked by Using Low- and High-Molecular-Weight Cross-Linkers, Biomacromo lecules, 20(5), 1989(2019).
11 N. I. Taib, V. Agarwal, N. M. Smith, R. C. Woodward, T. G. Pierre, and K. S. Lyer, Direct Correlation of PNIPAM Thermal Transition and Magnetic Resonance Relaxation of Iron Oxide Nanoparticles, Materials Chemistry Frontiers, 1(11), 2335(2017).
12 B. Sanz, C. Bilderling, J. S. Tuninetti, L. Pietrasanta, C. Mijangos, G. S. Longo, O. Azzaroni, and J. M. Giussi, Thermally-induced Softening of PNIPAm-based Nanopillar Arrays, Soft Matter, 13(13), 2453(2017).
13 B. Yang, S. Zhang, P. Wang, C. Liu, and Y. Zhu, Robust and Rapid Responsive Organic-inorganic Hybrid Bilayer Hydrogel Actuators with Silicon Nanoparticles as the Cross-linker, Polymer, 228(16), 123863(2021).
14 E. Zhang, T. Wang, C. Lian, W. Sun, X. Liu, and Z. Tong, Robust and Thermo-response Graphene-PNIPAm Hybrid Hydrogels Reinforced by Hectorite Clay, Carbon, 62, 117 (2013).
15 H. Warren, M. Panhuis, G. M. Spinks, and D. L. Officer, Thermal Actuation of Hydrogels from PNIPAm, Alginate, and Carbon Nanofibres, Journal of Polymer Science, Part B: Polymer Physics, 56(1), 46(2018).
16 X. Zhao, X. Ding, Z. Deng, Z. Zheng, Y. Peng, and X. Long, Thermoswitchable Electronic Properties of a Gold Nanoparticle/Hydrogel Composite, Macromolecular Rapid Communications, 26(22), 1784(2005).
17 A. Ahiabu and M. J. Serpe, Rapidly Responding pH- and Temperature-Responsive Poly(N-Isopropylacrylamide)-Based Microgels and Assemblies, ACS Omega, 2(5), 1769(2017).
18 I. Y. Jung, J. S. Kim, B. R. Choi, K. Lee, and H. Lee, Hydrogel based Biosensors for In vitro Diagnostics of Biochemicals, Proteins, and Genes, Advanced Healthcare Materials, 6(12), 1601475(2017).
19 Y. Liu, Q. Fan, Y. Huo, M. Li, H. Liu, and B. Li, Construction of Nanocellulose-based Composite Hydrogel with a Double Packing Structure as an Intelligent Drug Carrier, Cellulose, 28, 6953(2021).
20 G. Ge, Y. Lu, X. Qu, W. Zhao, Y. Ren, W. Wang, Q. Wang, W. Huang, and X. Dong, Muscle-Inspired SelfHealing Hydrogels for Strain and Temperature Sensor, ACS Nano, 14(1), 218(2020).
21 E. Lee, S. Gwon, B. Ji, and S. Kim, Thermo- and Acid/base-induced Spectral Switching of a Poly(N-isopropyl acrylamide) Copolymer Containing Benzopyran-based D-π-A type Dye Units, Textile Coloration and Finishing, 22(3), 181(2010).
22 J. Jang, H. Park, and Y. Jeong, Effect of Coloration on the Hydrophilicity and Swelling Properties of Poly-HEMA Hydrogels, Journal of the Korean Society of Dyers and Finishers, 19(2), 7(2007).
23 Q. Pang, H. Hu, H. Zhang, B. Qiao, and L. Ma, Temperature-Responsive Ionic Conductive Hydrogel for Strain and Temperature Sensors, ACS Applied Materials and Interfaces, 14(23), 26536(2022).
24 X. Zhao, X. Ding, Z. Deng, Z. Zheng, Y. Peng, C. Tian, and X. Long, A Kind of Smart Gold Nanoparticle-hydrogel Composite with Tunable Thermo-switchable Electrical Properties, New Journal of Chemistry, 30(6), 915(2006).
25 L. Sambe, V. R. Rosa, K. Belal, F. Stoffelbach, J. Lyskawa, F. Delattre, M. Bria, G. Cooke, R. Hoogenboom, and P. Woisel, Programmable Polymer-Based Supramolecular Temper ature Sensor with a Memory Function, Angewandte Chemie, 126(20), 5144(2014).
26 L. Xia, R. Xie, X. Ju, W. Wang, Q. Chen, and L. Chu, Nano-structured Smart Hydrogels with Rapid Response and High Elasticity, Nature Communications, 4, 2226(2013).
27 F. Curry, T. Lim, N. S. Fontaine, and H. Zhang, Highly Conductive Thermoresponsive Silver Nanowire PNIPAM Nanocomposite for Reversible Electrical Switch, Soft Matter, Accepted Manuscript.
28 C. Zhang, F. Cao, J. Wang, Z. Yu, J. Ge, Y. Lu, Z. Wang, and S. Yu, Highly Stimuli-Responsive Au Nanorods/Poly(N-isopropylacrylamide) (PNIPAM) Composite Hydrogel for Smart Switch, ACS Applied Materials and Interfaces, 9(29), 24857(2017).
29 X. Zhang and L. M. Bellan, Composites Formed from Thermoresponsive Polymers and Conductive Nanowires for Transient Electronic Systems, ACS Applied Materials and Interfaces, 9(26), 21991(2017).
30 T. Lim, M. Kim, A. Akbarian, J. Kim, P. A. Tresco, and H. Zhang, Conductive Polymer Enabled Biostable Liquid Metal Electrodes for Bioelectronic Applications, Advanced Healthcare Materials, 11(11), 2102382(2022).
31 T. Lim and H. Zhang, Multilayer Carbon Nanotube/Gold Nanoparticle Composites on Gallium-Based Liquid Metals for Electrochemical Biosensing, ACS Applied Nano Materials, 4(11), 12690(2021).
32 M. D. Dickey, Stretchable and Soft Electronics using Liquid Metals, Advanced Materials, 29(27), 1606425(2017).
33 Y. Zhu, S. Liu, X. Shi, D. Han, and F. Liang, A Thermally Responsive Host-guest Conductive Hydrogel with Self-healing Properties, Materials Chemistry Frontiers, 2(12), 2212(2018).
34 R. Guo and J. Liu, Implantable Liquid metal-Based Flexible Neural Microelectrode Array and its Application in Reco vering Animal Locomotion Functions, Journal of Micro mechanics and Microengineering, 27(10), 104002(2017).
35 M. A. Creighton, M. C. Yuen, M. A. Susner, Z. Farrell, B. Maruyama, and C. E. Tabor, Oxidation of Gallium-based Liquid Metal Alloys by Water, Langmuir, 36(43), 12933(2020).
36 T. Lim, T. A. Ring, and H. Zhang, Chemical Analysis of the Gallium Surface in a Physiologic Buffer, Langmuir, 38(22), 6817(2022).
37 X. Gao, Y. Cao, X. Song, Z. Zhang, C. Xiao, C. He, and X. Chen, pH- and Thermo-responsive Poly(N-isopropylacry lamideco-acrylic acid derivative) Copolymers and Hydrogels with LCST Dependent on pH and Alkyl Side Groups, Journal of Materials Chemistry B, 1(41), 5578(2013).
38 F. He, R. Lycke, M. Ganji, C. Xie, and L. Luan, Ultra flexible Neural Electrodes for Long-Lasting Intracortical Recording, iScience, 23(8), 101387(2020).