• Title/Summary/Keyword: Modulus transformation

Search Result 61, Processing Time 0.02 seconds

Measurement of Flexural Modulus of Lamination Layers on Flexible Substrates (유연 기판 위 적층 필름의 굽힘 탄성계수 측정)

  • Lee, Tae-Ik;Kim, Cheolgyu;Kim, Min Sung;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.63-67
    • /
    • 2016
  • In this paper, we present an indirect method of elastic modulus measurement for various lamination layers formed on polymer-based compliant substrates. Although the elastic modulus of every component is crucial for mechanically reliable microelectronic devices, it is difficult to accurately measure the film properties because the lamination layers are hardly detached from the substrate. In order to resolve the problem, 3-point bending test is conducted with a film-substrate specimen and area transformation rule is applied to the cross-sectional area of the film region. With known substrate modulus, a modulus ratio between the film and the substrate is calculated using bending stiffness of the multilayered specimen obtained from the 3-point bending test. This method is verified using electroplated copper specimens with two types of film-substrate structure; double-sided film and single sided film. Also, common dielectric layers, prepreg (PPG) and dry film solder resist (DF SR), are measured with the double-sided specimen type. The results of copper (110.3 GPa), PPG (22.3 GPa), DF SR (5.0 GPa) were measured with high precision.

Method of Deciding Elastic Modulus of Left and Right Ventricle Reconstructed by Echocardiography Using Finite Element Method and Stress Analysis

  • Han, Geun-Jo;Kim, Sang-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.217-224
    • /
    • 1994
  • In order to study the shape and dimensions of heart, a procedure to reconstruct a three dimensional left ventricular geometry from two dimensional echocardiographic images was studied including the coordinate transformation, curve fitting and interpolation utilizing three dimensional position registration arm. Nonlinear material property of the left ventricular myocardium was obtained by finite element method performed on the reconstructed geometry and by optimization techniques which compared the computer predicted 3D deformation with the experimentally determined deformation. Elastic modulus ranged from 3.5g/$cm^2$ at early diastole to l53g/$cm^2$ at around end diastole showing slightly nonlinear relationship between the modulus and the pressure. Afterwards using the obtained nonlinear material propertry the stress distribution related with oxyzen consumption rate was analyzed. The maximum and minimum of ${\sigma}_1$ (max. principal stress) occurred at nodes on the second level intersection points of x-axis with endocardium and with epicardium, respectively. And the tendency of the interventricular septum to be flattened was observed from the compressive ${\sigma}_1$ on the anterior, posterior nodes of left ventricle and from the most significant change of dimension in $D_{RL}$ (septal-lateral dimension of right ventricle).

  • PDF

Goodness of Link Tests for Binary Response Data

  • Yeo, In-Kwon
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.357-366
    • /
    • 2001
  • The present paper develops a method to check the propriety of link functions for binary data. In order to parameterize a certain type of goodness of the link, a family of link functions indexed by a shape parameter is proposed. I first investigate the maximum likelihood estimation of the shape parameter as well as regression parameters and then derive their large sample behaviors of the estimators. A score test is considered to evaluate the goodness of the current link function. For illustration, I employ two families of power transformations, the modulus transformation by John and Draper (1980) and the extended power transformation by Yeo and Johnson (2000), which are appropriate to detect symmetric and asymmetric inadequacy of the selected link function. respectively.

  • PDF

Effects of Annealing Treatments on Microstructure and Mechanical Property of co-sputtered TiNi Thin Film (Co-sputtering에 의해 증착된 TiNi 박막의 미세조직 및 기계적성질에 미치는 어닐링 열처리 효과)

  • Park, S.D.;Baeg, C.H.;Hong, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2008
  • Effects of annealing treatment on microstructure and mechanical property of co-sputtered TiNi thin films were studied. As-deposited films showed amorphous state. However, above annealing temperature of $500^{\circ}C$ martensite phase (B19'), precipitate phase ($Ti_2Ni$) and a small amount of parent phase ($B_2$) were present, and phase transformation behaviors were three multi-step phase transformations $B19^{\prime}{\rightarrow}B_2$ and $B_2{\rightarrow}R-phase$ and $R-phase{\rightarrow}B19^{\prime}$. Increase of martensite transformation temperature, increase of microhardness and Young's modulus of TiNi films annealed above $500^{\circ}C$ were discussed in terms of precipitate phase.

Application of the Laplace transformation for the analysis of viscoelastic composite laminates based on equivalent single-layer theories

  • Sy, Ngoc Nguyen;Lee, Jaehun;Cho, Maenghyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.458-467
    • /
    • 2012
  • In this study, the linear viscoelastic response of a rectangular laminated plate is investigated. The viscoelastic properties, expressed by two basic spring-dashpot models, that is Kelvin and Maxwell models, is assumed in the range to investigate the influence of viscoelastic coefficients to mechanical behavior. In the present study, viscoelastic responses are performed for two popular equivalent single-layered theories, such as the first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT). Compliance and relaxation modulus of time-dependent viscoelastic behavior are approximately determined by Prony series. The constitutive equation for linear viscoelastic material as the Boltzmann superposition integral equation is simplified by the convolution theorem of Laplace transformation to avoid direct time integration as well as to improve both accuracy and computational efficiency. The viscoelastic responses of composite laminates in the real time domain are obtained by applying the inverse Laplace transformation. The numerical results of viscoelastic phenomena such as creep, cyclic creep and recovery creep are presented.

On Calculating Eigenvalues In Large Power Systems Using Modified Arnoldi Method

  • Lee, Byong-Jun;Iba, Kenjl;Hirose, Michio
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.734-736
    • /
    • 1996
  • This paper presents a method of calculating a selective number of eigenvalues in power systems, which are rightmost, or are largest modulus. The modified Arnoldi method in conjunction with implicit shift OR-algorithm is used to calculate the rightmost eigenvalues. Algorithm requires neither a prior knowledge of the specified shifts nor the calculation of inverse matrix. The key advantage of the algorithm is its ability to converge to the wanted eigenvalues at once. The method is compared with the modified Arnoldi method combined with S-matrix transformation, where the eigenvalues having the largest modulus are to be determined. The two methods are applied to the reduced Kansai system. Convergence characteristics and performances are compared. Results show that both methods are robust and has good convergence properties. However, the implicit shift OR method is seen to be faster than the S-matrix method under the same condition.

  • PDF

Pore Structure and Mechanic:11 Property of Porous TiNi Biomaterial Produced by Self-Propagating High-Temperature Synthesis (고온자전합성법으로 제조된 다공성 TiNi 생체재료의 기공구조 및 기계적 특성)

  • 김지순;강지훈;양석균;정순호;권영순
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.34-39
    • /
    • 2003
  • Porous TiNi bodies were produced by Self-propagating High-temperature Synthesis (SHS) method from a powder mixture of Ti and Ni. Porosity, pore size and structure, mechanical property, and transformation temperature of TiNi product were investigated. The average porosity and pore size of produced porous TiNi body are 63% and $216\mutextrm{m}$, respectively. XRD analysis showed that the major phase of produced TiNi body is B2 phase. Its average fracture strength and elastic modulus measured under dry condition were $22\pm2$ MPa and $0.18\pm0.01$GPa, respectively. It could be strained up to 7.3 %. The transformation temperatures determined by DSC showed the $M_s$ temperature of $67^{\circ}C$ and $A_f$ temperature of $99^{\circ}C$.

A Study on Microstructure and Phase Transformation of Sintered Body in $CaO-ZrO_2$ System ($CaO-ZrO_2$계 소결체의 상변화와 미구조에 관한 연구)

  • 박금철;최영섭
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.3
    • /
    • pp.217-226
    • /
    • 1983
  • Adquate amount of calcia was added to the regent-grade Zirconia body. Here the amount and the form of calcia were 7-21 mol% and regent-grade calcium cabonate respectively. The specimens were fired at 175$0^{\circ}C$ for 0, 3, 5 and 7 hours respectively. The phase Strength X-ray diffraction analysis and Scaning electron microscopy. The results were as follows (1) As the additive amount of calcia was increased the firing linear shrinkage apparent density compressive strength and modulus of rupture decreased but the apparent porosity increased. (2) The specimens soaked and containing calcia displayed the grain growth. (3) Monoclinic and cubic zirconia were seen in the sepcimens containing 7 mol% calcia. When without soaking the specimens containing 7-10 mol% calcia had the volume change by monoclinic$\rightleftharpoons$tetragonal transformation. (4) The lattice parameter increased according as the calcia additive was increased. The specimens containing above 19mol% calcia had the costant lattice parameter. The value of that was from 5.1264 to 5.1396 $\AA$ in the case of 7 hours soaking.

  • PDF

Stress analysis of a two-phase composite having a negative-stiffness inclusion in two dimensions

  • Wang, Yun-Che;Ko, Chi-Ching
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.321-332
    • /
    • 2009
  • Recent development in composites containing phase-transforming particles, such as vanadium dioxide or barium titanate, reveals the overall stiffness and viscoelastic damping of the composites may be unbounded (Lakes et al. 2001, Jaglinski et al. 2007). Negative stiffness is induced from phase transformation predicted by the Landau phase transformation theory. Although this unbounded phenomenon is theoretically supported with the composite homogenization theory, detailed stress analyses of the composites are still lacking. In this work, we analyze the stress distribution of the Hashin-Shtrikman (HS) composite and its two-dimensional variant, namely a circular inclusion in a square plate, under the assumption that the Young's modulus of the inclusion is negative. Assumption of negative stiffness is a priori in the present analysis. For stress analysis, a closed form solution for the HS model and finite element solutions for the 2D composite are presented. A static loading condition is adopted to estimate the effective modulus of the composites by the ratio of stress to average strain on the loading edges. It is found that the interfacial stresses between the circular inclusion and matrix increase dramatically when the negative stiffness is so tuned that overall stiffness is unbounded. Furthermore, it is found that stress distributions in the inclusion are not uniform, contrary to Eshelby's theorem, which states, for two-phase, infinite composites, the inclusion's stress distribution is uniform when the shape of the inclusion has higher symmetry than an ellipse. The stability of the composites is discussed from the viewpoint of deterioration of perfect interface conditions due to excessive interfacial stresses.

Characteristics of Undrained Static Shear Behavior for Sand Due to Aging Effect (Aging 효과에 따른 모래의 비배수 정적전단거동 특성)

  • 김영수;김대만
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.137-150
    • /
    • 2004
  • Aging effect of sands showed insignificant result in comparison with that of clay, so that it has not been studied so far. But, as penetration resistance increase has been observed with the lapse of time after deposition and disturbance, aging effect of sands has been actively investigated by field tests, and recently many researchers are performing not oかy field tests but also laboratory tests on sands, so aging effects of sands have been also examined by laboratory tests. In this study, to observe the aging effect of undrained static shear behavior for Nak-Dong River sand, undrained static triaxial tests were performed with changing relative density$(D_r)$, consolidation stress ratio$(K_c)$, and consolidation time. These tests showed that modulus within elastic section increased as consolidation time increased, and in addition, phase transformation point strength$(S_{PT})$ and critical stress ratio point strength $(S_{CSR})$ also increased. But pore water pressure ratio$(u/{p_c}')$ decreased as consolidation time increased, so with this various result, aging effect of static shear for sands can be observed as well.