DOI QR코드

DOI QR Code

Pore Structure and Mechanic:11 Property of Porous TiNi Biomaterial Produced by Self-Propagating High-Temperature Synthesis

고온자전합성법으로 제조된 다공성 TiNi 생체재료의 기공구조 및 기계적 특성

  • 김지순 (울산대학교 첨단소재공학부, 기계부품 및 소재특성평가센터(ReMM)) ;
  • 강지훈 (㈜바이오스마트) ;
  • 양석균 (울산대학교 첨단소재공학부, 기계부품 및 소재특성평가센터(ReMM)) ;
  • 정순호 (울산대학교 첨단소재공학부, 기계부품 및 소재특성평가센터(ReMM)) ;
  • 권영순 (울산대학교 첨단소재공학부, 기계부품 및 소재특성평가센터(ReMM))
  • Published : 2003.02.01

Abstract

Porous TiNi bodies were produced by Self-propagating High-temperature Synthesis (SHS) method from a powder mixture of Ti and Ni. Porosity, pore size and structure, mechanical property, and transformation temperature of TiNi product were investigated. The average porosity and pore size of produced porous TiNi body are 63% and $216\mutextrm{m}$, respectively. XRD analysis showed that the major phase of produced TiNi body is B2 phase. Its average fracture strength and elastic modulus measured under dry condition were $22\pm2$ MPa and $0.18\pm0.01$GPa, respectively. It could be strained up to 7.3 %. The transformation temperatures determined by DSC showed the $M_s$ temperature of $67^{\circ}C$ and $A_f$ temperature of $99^{\circ}C$.

Keywords

References

  1. Shpe memory alloys I. Otsuka;Kazuhiro
  2. Engineering Aspects of Shape Memory Alloys T. W. Duering;K. N. Melton;D. St ckel;C.M. Wayman
  3. J. Endourology v.11 Irena Gotman https://doi.org/10.1089/end.1997.11.383
  4. Metal as Biomaterials Jef A. Helsen
  5. Tiの醫療への適用のために 二涌維四
  6. Biomaterial Material Research v.43 C. Trepanier;T. K. Leung;M. Tabrizian;L'H. Yahia;J.-G. Bienvenu;J.-F. Tanguay;D. L. Piron;L. Bilodeau https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<433::AID-JBM11>3.0.CO;2-#
  7. J. Vac. Sci. Technol. v.A13 S. A. Shabalovskaya;J. W. Anderegg
  8. Biomaterials v.18 F. Takeshita;H. Takata;Y. Ayukawa;T. Suetsugu https://doi.org/10.1016/S0142-9612(96)00051-8
  9. J. Biomed. Mater Res. v.35 J. Ryhanen;E. Niemi;W. Serlo;E. Niemela;P. Sandvik;H. Pernu;T. Salo https://doi.org/10.1002/(SICI)1097-4636(19970615)35:4<451::AID-JBM5>3.0.CO;2-G
  10. J. Biomed. Mater Res. v.10 L. S. Castleman;S. M. Motskin;F. P. Alicandri;V. L. Bonawit https://doi.org/10.1002/jbm.820100505
  11. Orthopedics v.12 P. P. F. Kuo;P.J. Yang;Y. F. Zhang;H. B. Yang;Y. F. Yu;K. R. Dai;W. Q. S. Lu
  12. Proceed. Soc. Biomater M. Assad;E. A. DesRosiers;L"H. Yahia;C. H. Rivard
  13. Second World Congress on Biomaterials H. Ohnishi;E. Tsuji;M. Miyaga;T. Hamada;Y. Suzuki;T. Nabeshima;T. Hamaguchi;N. Okabe
  14. Angle Orthod. v.51 J. W. Edie;G. F. Andreasen;M. P. Zaytoun
  15. Eur. Surg. Res. v.24 J. L. M. Putters;D. M. K. S. Kaulesar Sukul;G. R. deZeeuw;A. Bijma;P. A. Besselink https://doi.org/10.1159/000129231
  16. Reconstructing the human body using Biomaterials v.48 C. M. Agrawal
  17. Acta Mater. v.48 B. Y. Li;L. J. Rong;Y. Y. Li;V. E. Gjunter https://doi.org/10.1016/S1359-6454(00)00184-1
  18. J. Biomed. Mat. Res. v.43 C. Trepanet;N. Tabrizian https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<433::AID-JBM11>3.0.CO;2-#
  19. Med. Eng. Center of S.M.A. Delay Law and New Class of Materials and Implants in Medicine V. E. Gunter
  20. Cream. Eng. Sci. Proc. v.4 Z. A. Munir
  21. J. Mat. Sci. v.27 J. Surbrahmanyam;M. Vijayakumar https://doi.org/10.1007/BF00576271
  22. International Journal Self-Propagationg High-Temperature Synthesis v.1 V. I. Itin;V.E. Gjunter;L. A. Monasevitch;YU.F. Yasenchuk
  23. Biomaterials An introduction J. B. Park;R. S. Lakes
  24. Handbook of Biomaterials Properties J. Black;G. Hastings(Ed.)