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Abstract

This paper presents a method of calculating a selective number of
eigenvalues in power systems, which are rightmost, or are largest
modulus. The modified Arnoldi method in conjunction with implicit
shift QR-algorithm is used to calculate the rightmost eigenvalues.
Algorithm requires neither a prior knowledge of the specified shifts
nor the calculation of inverse matrix. The key advantage of the
algorithm is its ability to converge to the wanted eigenvalues at once.
The method is compared with the modified Arnoldi method combined
with S-matrix transformation, where the eigenvalues having the
largest modulus are to be determined. The two methods are applied
to the reduced Kansai system. Convergence characteristics and
performances are compared. Results show that both methods are
robust and has good convergence properties. However, the implicit
shift QR method is seen to be faster than the S-matrix method under
the same condition.
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I. Introduction

A large eigenvalue problems arise in a variety of works in power
system planning and operations. Power uitlities in Japan have used
eigenvalue analysis as one of important tools in dealing with low
frequency oscillation problems. In manufacturing companies, one of
key steps involved in designing process of FACTS equipment is the
decision of dynamic characteristics. The dynamic characteristics of
FACTS for maintaining entire uitlity system stability are usually
decided from eigenvalue analysis. In addition to these examples,
applications of eigenvalue analysis to the power systems are
widespread and need to conduct large eigenvalue analysis is being
increasingly recognized .

The modified Arnoldi method is a popular algorithm for solving large
eigenvalue problems, which has been first introduced to power
systems in [1]. it is widely accepted that the method is the most
appropriate for finding a few eigenvalues and corresponding
eigenvectors of a large nonsymmetric matrix, However, there is a
notable lack of general purpose to find eigenvalues of interest in
power systems. Although eigenvalues we want to find are rightmost
one (or close to imaginary axis), Arnoldi iterations are converged to
the eigenvalues having the largest modulus. Thus, some initial
transformation (preconditioning) is necessary to have the rightmost
eigenvalues dominant.

Shift-invert transformation is very popular but several shifts are usually
necessary to determine the rightmost eigenvalues. To be run
efficiently, this job requires a more trained engineer. From this
viewpoint, the best known method is S-matrix method {2]. It needs
to be applied only once for the calculation of all the rightmost
eigenvalues. Refs. [3,4] reported their attempts to combine S-Matrix
transformation with the modified Arnoldi method. In [5], Mori et al.
addressed a problem inherent to the S-matrix transformation and
proposed an improved approach,

In ref. [6), authors made an attempt to calculate the rightmost
eigenvalues using the modified Arnoldi method combined with the
implicit shift QR method. Main characteristics of the method and its
implementing procedures are described in the next section. Contrary
to the S-matrix method, this algorithm does not require an initial
transformation. So, a matrix factorization required in the
transformation is not necessary. The main objective of this paper is
to compare the performance and convergence properties of the two
methods.
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2. Modified Arnoldi with Implit_:it Shift QR Method

The key steps of the basic modified Arnoldi method are described
in Figure 1. (Sée ref (6} for the details.) As mentioned in preceding
section, the modified Arnoldi method needs preconditioning to find
the rightmost eigenvalues. In addition to this, it is difficult to extract
the rightmost eigenvalues if the rightmost eigenvalues are clustered
together while the others are separated favorably from one another.
To avoid these shortcomings, implicit shift QR method is applied in
conjunction with the modified Arnoldi method. The implicit shift QR
algorithm amplifies the components of the vector toward the direction
of the wanted eigenvalues and at the same time damping those in
the remaining eigenvectors. This mechanism is adapted to calculate
a new starting vector in Arnoldi iterations. So, sorting the rightmost
eigenvalues and calculating a new starting vector will provide a
new set of the eigenvalues that are located further rightside compared
to the previous set. Implementation of the implicit shift QR algorithm
is described in Figure 2. The procedures in Figure 2 are replaced
with step k of Figure 1 to calculate the rightmost eigenvalues.
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Figure 1. Algorithm of the modified Arnoldi method {6]

3. Modified Arnoldi with S-matrix

S-matrix algorithm is combined with the modified Arnoldi method
by replacing the matrix J in step b of Figure 1 with the following
matrix .

Jom L4 (b =Y -mIT 4]

where ; is an identity matrix. Eq. 1 is a general expression of the
S-Métrix transformation of the matrix J . which is so-called Cayley

transfogmation. Symmetry axis will be located in the center point
between h1 and h2. Obvioiusly, the wanted eigenvalues in new
domain appears as eigenvalues having largest modulus. In step_
k.1 of Figure 2, largest modulus eigenvalues are sorted instead of
rightmost eigenvalues. It should be noted that the calculation of
inverse matrix is required in Eq. 1 whereas it is not required in
implicit shift QR algorithm.
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Table 2. Converged eigenvalues for implicit shift QR

Figure 2. Calculation of the starting vector
for the rightmost eigenvalues [6)

4. Numerical Results

Reduced Kansai system is considered for comparing two algorithms.
The composition and size of the system is summarized in Table 1.

Table 1. Description of test system
buses generators AVR PSS Total No. of states
961 26 26 13 291

Complete eigenanalysis has been performed using LAPACK routine
DGEEV to verify the resuits obtained in this section. Figure 3 shows
distribution of the eigenvalues, in which the eigenvalues having real
parts greater than -2 are included. The DGEEV run required 102.46
[sec] to compute all eigenvalues and the associated eigenvectors.
Calculations reported in this paper were performed with double
precision on an HP 735/125 workstation.
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Figure 3. Eigenvalue distribution
of the reduced Kansai system

4.1 Modified Arnoldi with implicit shift QR

The system is analyzed first using the modified Amoldi with the implicit
shift QR to obtain the rightmost eigenvalues. In Amoldi stap, iteration
was halted when residue became less than 1.0E-6. This ad hoc
stopping rule allowed the iteration to halt quite early in cases where
it was difficult to make a clear separation between the wanted
eigenvalues and unwanted eigenvalues. Computational efficiency
varies for different numbers of wanted eigenvalues and additional
steps. Detailed observation on this matter appears in [6]. After trying
different number of wanted eigenvalues, the best results are selected
for the number of additional steps, 22. Table 2 shows the results,
where 4 pais of rightmost complex eigenvalues are determined.

4.2 Modified Arno!di with S-Matrix

In Eq. 1, there is no criterion for choosing optimal shifts h1 and h2.
To have an insight of the transforming mechanism, we perform the
S-matrix transformation of the original eigenspace (not eigenvalues)
defined in Figure 3 using various shifts. Resuits of the transformations

k.1 Sort eigenvalues . ) i .
) . Eigenvalue Eigenvaiue Residue CPU time
- m rightmost eigenvalues (original)~  (converged) [seconds])
- p rest eigenviaues as shifts -0.031 :
k2 Q=1 -0.078+j1.910 X 5.02E-10
’ mep -0.095
k3 for j=12,....p -0.102+j4.481 X 2.80E-11 789.38
-0.121+j5.373 X 9.86E-09
T
H=Q;HQ, -0.130+j0.692 x 1.61E-08
-0.132
2=00; -0.152+j6.196
k4 V=(VQ)e,.,, -0.167+j5.731
k& v, =1Q are shown in Figure 4. In transformed space, density changes
k6 r=ve . He +rel dramatically depending on the value of the shifts. For small h (0.5)
O r=ven e, +re,, Qe shown in Figure 4.a, density is extremely high in right-hand part and

fairly low in opposite part of the figure. Resuits of increasing h are
shown in Figures 4.b-4.1. As clearly observed in those figures,
incresing h changes both geometrical shape and density in the
transformed space. The mapped areas in those figure are gradually
shrunken to left side and dense part also gradually moves to left
side. Contrary to Figure 4.a, a transformed space in Figure 4.f is
severely shrunken and very dense.
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Figure 4. S-matrix transformation of eigenspace for different shifts
h (h1=h2) varying from 1 to 50

S-matrix transformations of original eigenvalues are shown in Figure
5, where an ellipse represents a unit circle. Each figure corresponds
to different value of the shifts, We experienced very poor convergence
when imaginary axis become a symmetry axis. So, non-imaginary
axis is recommended to become a symmetry axis. Here, a vertical
line crossing the horizontal axis at -0.2 is selected as a symmetry
axis. Eigenvalues having real part greater than -0.2 will appear outside
a unit circle. As observed in preceding pagraph, density is very high
at either right-hand part (Figure 5.a) or left-hand part (Figure 5.d) in
the two extreme values. Distribution of eigenvalues are more or less
spreaded-in Figures 5.b and 5.c compared to other two extremes.

Determining rightmost eigenvalues becomes a problem determining
the largest modulus eigenvalues in the S-matrix transformation.
However, the rank of the rightmost eigenvalues we want to find is not
always identical to the rank of eigenvalues having the largest modulus.
For example, in Figure 5.a, eigevalues having the largest modulus
are several real eigenvalues located outside circle. Obviously, the
rightmost eigenvalues are irrespective of the eigenvalues having the
largest modulus in the figure. Table 3 shows the rank of the modulus.
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Figure 5. Transformed eigenvalue distribution using S-Matrix

First column in Table 3 contains the original rightmost eigenvalues
in descending order. The other four columns show the rank of the
corresponding eigenvalues in the transformed space with respect to
the modulus. Discrepancies between the two ranks are very large in
column a). It is because the wanted eigenvalues are clustered in
dense area, whereas many unwanted real eigenvalues are sepatated
favorably. However, when the shift h increases, the discrepancies
become small. In column d), we can see the two ranks are identical,
which is for large shift,

Table 3. Rank of largest modulus in transformed space

Eigenvalue shifts h1 & h2

(original) a)0.1&-0.5 b)5.1&-5.5 ¢}10.1&-10.5 d)50.1&-50.5
-0.031 1 1 1 1
-0.078+j1.910 9,10 2,3 23 23
-0.095 2 4 4 4
-0.102+j4.481 11,12 8,9 5.6 56
-0.121+j5.373 13,14 10,11 10,11 7.8
-0.130+j0.692 5,6 5,6 7.8 9,10
-0.132 3 7 9 11
-0.152+§6.196. 16,17 13,14 12,13 12,13
-0.167+j5.731 18,19 15,16 14,15 14,15
-0.178 4 12 16 16
-0.190 7 17 17 17
-0.195 8 18 18 18
-0.200 15 19 19 19

Resuits of applying the S-matrix method are summarized in Table 4.
First column is the rightmost eigenvalues in descedning order as
shown in Table 3. The other four columns indicate converged
eigenvalues for the different shifts. The converged eigenvalues are
marked by x. In all the cases, the converged eigenvalues are the
ones having the largest moduli. A number of converged eigenvalues
in the table is not same from one another. For example, in column
a), relatively many eigenvalues are obtained compared to the other
cases. Among the eigenvalues obtained, however, some of the
eigenvalues are unwanted real eigenvalues while some wanted
eigenvalues are missing. This result was well expected from the
observations of the eigenspace and eigenvalue distributions shown
in Figures 4 and 5. The reason we have many unwanted eigenvalues
are because geometrical distances betwen the sigenvalues close to
real axis are expanded large in the transformed space whereas others
not close to the real axis are scontracted. When the shift increases,
a number of the converged eigenvalues is reduced but they are
more or less all wanted eigenvalues.

The CPU times required for the above calculations are given in Table
5. Compared to the implicit shift QR method, the S-matrix method
required almost double CPU time under the same condition.
Choosing the different shifts also affects CPU time. Interestingly,
case b) took the least CPU time among the casese. This result is
somewhat expected from the observations made in the preceding
paragraphs.

Table 4..Converged eigenvalues for 1000 Arnoldi iterations

Eigenvalue shifts h1 & h2

(original) a)0.1&-0.5 b)5.1&-5.5 ¢)10.1&-10.5 d)50.1&-50.
-0.031 X X X X
-0.078+j1.910 X X X x
-0.09 b3 X X X
#0:102+}4.481 : X X S
~01214{5.373 7 X
-0.130+]0.692" =X X X

-0.132 X x

-0.1524/6.196

-0.167+j5.731

-0.178 x

-0.190 X

-0.195. x

-0.200

Table 5. CPU time comparison
shifts ht & h2
a)0.1&-0.5 b)5.1&-5.5 ¢)10.1&-10.5 d)50.1&-50.
CPUtime[s] 1486.55 1350.29 1562.57 1575.67

5. Conclusions

The paper has described two methods based on the modified Arnoldi
method for the calculation of rightmost eigenvalues in large power
systems. From the numerical results, it is clearly observed that these
two methods give practically identical results. The methods are
robust and have good convergence properties. Performances of the
two methods are heavily affected by the number of additicnal steps.
From the CPU time comparisons, the modified Arnoldi with implicit
shift QR is seen to be faster than the modified Arnoldi with the S-
matrix under the same condition.

Sensitivity of the S-matrix transformation with respect te the shift h
was visualized. Observation of the geometrical properties involved
in the S-matrix transformation was useful for the analyses of the
numerical resutls. The selection of the shift requires a particular
attention.

Although computational results for the modified Arnoldi method are
quite promising, the mechanism of determining the rightmost
eigenvalues is yet preliminary to deal with the problems existing in
the practical system. Our limited experience indicates that a better
understanding of the convergence estimates would be helpful to
better deal with the close eigenvalues. Work is under way to improve
the efficiency and speed of the method.
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