In weapon systems development, live fire tests have been frequently adopted to evaluate the performance of the systems under development. Therefore, it is necessary to ensure safety in the test ranges where the live fire tests can cause serious hazards. During the tests, a special care must be taken to protect the test and evaluation (T&E) personnel and also test assets from potential danger and hazards. Thus, the development and management of the range safety process is quite important in the tests of guided missiles and artillery considering the explosive power of the destruction. Note also that with a newly evolving era of weapon systems such as laser, EMP and non-lethal weapons, the test procedure for such systems is very complex. Therefore, keeping the safety level in the test ranges is getting more difficult due to the increased unpredictability for unknown hazards. The objective of this paper is to study on how to enhance the safety in the test ranges. To do so, an approach is proposed based on model-based systems engineering (MBSE). Specifically, a functional architecture is derived utilizing the MBSE method for the design of the range safety process under the condition that the derived architecture must satisfy both the complex test situation and the safety requirements. The architecture developed in the paper has also been investigated by simulation using a computer-aided systems engineering tool. The systematic application of this study in weapon live tests is expected to reduce unexpected hazards and test design time. Our approach is intended to be a trial to get closer to the recent theme in T&E community, "Testing at the speed of stakeholder's need and rapid requirement for rapid acquisition."
In order to reduce the trial-and-errors in design and production of injection molded plastic parts, there has been much research effort not only on CAE systems which simulate the injection molding process, but also on CAD systems which support initial design and re-design of plastic parts and their molds. The CAD systems and CAE systems have been developed independently with being built on different basis. That is, CAD systems manipulate the part shapes and the design features in a complete solid model, while CAE systems work on shell meshes generated on the abstract sheet model or medial surface of the part. Therefore, it is required to support the two types of geometric models and feature information in one environment to integrate CAD and CAE systems for accelerating the design speed. A feature-based non-manifold geometric modeling system has been developed to provide an integrated environment for design and analysis of injection molding products. In this system, the geometric models for CAD and CAE systems are represented by a non-manifold boundary representation and they are merged into a single geometric model. The suitable form of geometric model for any application can be extracted from this model. In addition, the feature deletion and interaction problem of the feature-based design system has been solved clearly by introducing the non-manifold Boolean operation based on 'merge and selection' algorithm. The sheet modeling capabilities were also developed for easy modeling of thin plastic parts.
In this paper, we present recursive algorithms for state space model identification using subspace extraction via Schur complement. It is shown that an estimate of the extended observability matrix can be obtained by subspace extraction via Schur complement. A relationship between the least squares residual and the Schur complement matrix obtained from input-output data is shown, and the recursive algorithms for the subspace-based state-space model identification (4SID) methods are developed. We also proposed the above algorithm for an instrumental variable (IV) based 4SID method. Finally, a numerical example of the application of the algorithms is illustrated.
A radar scattering model is developed based on an empirical rough surface scattering model, the radiative transfer model (RTM), a numerical simulation algorithm of radar scattering from particles, and experimental data obtained by ground-based scatterometers and SAR systems. At first, the scattering matrices of scattering particles such as a leaf, a branch, and a trunk, have been modeled using the physical optics (PO) model and the numerical full-wave analysis. Then, radar scattering from a group of mixed particles has been modeled using the RTM, which leads to a general scattering model for earth surfaces. Finally, the scattering model has been verified with the experimental data obtained by scatterometers and SAR systems.
Automotive systems have tended to be equipped with many electronic contents to satisfy safety, comport, convenience, and entertainment services over the past years. As a result, the amount of vehicle embedded software in electrical/electronic(E/E) systems is steadily increasing to manage these requirements. This leads to the traditional, document-based software development in the vehicle embedded systems being increasingly displaced by a model-based development in order to reduce software development time and cost. Due to the application of model-based development, a great evolution is being realized in the aspect of efficiency, but the development is being made without sufficient testing. So, erroneous automotive embedded software may cause serious problems such as car accidents which relate to human safety. Therefore, efficient methods for model-based test and validation are needed to improve software reliability in the stage of embedded software development. This paper presents the model-based development and test method for AUTOSAR embedded software to improve its reliability and safety, and it is demonstrated based on the case study.
To reduce the expenses for development a novel drug, systems biology has been studied actively. Target prediction, a part of systems biology, contributes to finding a new purpose for FDA(Food and Drug Administration) approved drugs and development novel drugs. In this paper, we propose a classification model for predicting novel target genes based on relation between target genes and disease related genes. After collecting known target genes from TTD(Therapeutic Target Database) and disease related genes from OMIM(Online Mendelian Inheritance in Man), we analyzed the effect of target genes on disease related genes based on PPI(Protein-Protein Interactions) network. We focused on the distinguishing characteristics between known target genes and random target genes, and used the characteristics as features for building a classifier. Because our model is constructed using information about only a disease and its known targets, the model can be applied to unusual diseases without similar drugs and diseases, while existing models for finding new drug-disease associations are based on drug-drug similarity and disease-disease similarity. We validated accuracy of the model using LOOCV of ten times and the AUCs were 0.74 on Alzheimer's disease and 0.71 on Breast cancer.
This paper presents an on-line scheme for parameter estimation of continuous-time systems, based on the model adjustment technique and the genetic algorithm technique. To deal with the initialisation and unmeasurable signal problems in on-line parameter estimation of continuous-time systems, a discrete-time model is obtained for the linear differential equation model and approximations of unmeasurable states with the observable output and its time-delayed values are obtained for the nonlinear state space model. Noisy observations may affect these approximation processes and degrade the estimation performance. A digital prefilter is therefore incorporated to avoid direct approximations of system derivatives from possible noisy observations. The parameters of both the model and the designed filter are adjusted on-line by a genetic algorithm, A set of simulation works for linear and nonlinear systems is carried out to demonstrate the effectiveness of the proposed method.
Availability of input trajectories corresponding to desired output trajectories is often important in designing control systems for batch and other transient processes. In this paper, we propose a predictive control-type model-based iterative learning algorithm which is applicable to finding the nominal input trajectories of a linear time-invariant batch process. Unlike the other existing learning control algorithms, the proposed algorithm can be applied to nonsquare systems and has an ability to adjust noise sensitivity as well as convergence rate. A simple model identification technique with which performance of the proposed learning algorithm can be significantly enhanced is also proposed. Performance of the proposed learning algorithm is demonstrated through numerical simulations.
This paper proposes an improved architecture of web-based monitoring systems for monitor of processes in plants from the soft real-time point of view. The suggested model is designed to be able to guarantee the temporal and spatial consistency and transmit the monitoring data periodically via the intranet and the Internet. The model generates one thread for monitoring management, one DB thread, one common memory, and corresponding monitoring threads to clients. The monitoring thread is executed during the smaller time than the execution time of the process used in the conventional methods such as CGI and servlet method. The Java API for the server API, VRML, EAI(External Authoring Interface) and Java Applets for efficient dimensional WEB monitoring are used. The proposed model is implemented and tested for a FMS plant, Some examples show that the proposed model is useful one.
This paper presents a model-free system based on a framework of a backstepping sliding mode control (BSMC) with a radial basis function neural network (RBFNN) and adaptive mechanism for electro-hydraulic systems (EHSs). First, an EHS mathematical model was dedicatedly derived to understand the system behavior. Based on the system structure, BSMC was employed to satisfy the output performance. Due to the highly nonlinear characteristics and the presence of parametric uncertainties, a model-free approximator based on an RBFNN was developed to compensate for the EHS dynamics, thus addressing the difficulty in the requirement of system information. Adaptive laws based on the actor-critic neural network (ACNN) were implemented to suppress the existing error in the approximation and satisfy system qualification. The stability of the closed-loop system was theoretically proven by the Lyapunov function. To evaluate the effectiveness of the proposed algorithm, proportional-integrated-derivative (PID) and improved PID with ACNN (ACPID), which are considered two complete model-free methods, and adaptive backstepping sliding mode control, considered an ideal model-based method with the same adaptive laws, were used as two benchmark control strategies in a comparative simulation. The simulated results validated the superiority of the proposed algorithm in achieving nearly the same performance as the ideal adaptive BSMC.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.