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Abstract: This paper presents a model-free system based on a framework of a backstepping sliding mode control 

(BSMC) with a radial basis function neural network (RBFNN) and adaptive mechanism for electro-hydraulic 

systems (EHSs). First, an EHS mathematical model was dedicatedly derived to understand the system behavior. 

Based on the system structure, BSMC was employed to satisfy the output performance. Due to the highly nonlinear 

characteristics and the presence of parametric uncertainties, a model-free approximator based on an RBFNN was 

developed to compensate for the EHS dynamics, thus addressing the difficulty in the requirement of system 

information. Adaptive laws based on the actor-critic neural network (ACNN) were implemented to suppress the 

existing error in the approximation and satisfy system qualification. The stability of the closed-loop system was 

theoretically proven by the Lyapunov function. To evaluate the effectiveness of the proposed algorithm, 

proportional-integrated-derivative (PID) and improved PID with ACNN (ACPID), which are considered two 

complete model-free methods, and adaptive backstepping sliding mode control, considered an ideal model-based 

method with the same adaptive laws, were used as two benchmark control strategies in a comparative simulation. 

The simulated results validated the superiority of the proposed algorithm in achieving nearly the same performance 

as the ideal adaptive BSMC.
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1. Introduction

Taking the advantages of high load efficiency, high 

power-to-weight ratio, and fast response, electro-hydraulic 

systems (EHSs) are broadly applied for various 

high-order controlled systems such as construction 

machinery1-5), robotic manipulators6-7), automobile8), 

crane9), active suspension systems10-11), brake system12), 

and even in the field of renewable energy13).

As prominent potential to extensively implement for 

automatic systems, HSs have triggered an upward trend 

in research to improve its workability of tracking 

performance under several specific conditions. Several 

studies of control have been carried out for this 

purpose. Lee et al.14) applied a proportional-integrated- 

derivative (PID) controller for an electro-hydraulic servo 

system to exhibit the position tracking performance. 

Kim et al.15) suggested using a feedback linearization 

integrated with disturbance observer to deal with 

existing uncertainties in the hydraulic system. Tran et 

al. proposed an adaptive backstepping sliding mode 

control (BSMC) with adaptive laws based on neural 

network to satisfy position tracking performance of 

hydraulic manipulator actuated by an electro-hydraulic 

system (EHS)16). Huh considered position control based 

on sliding mode approach for an EHS subjects to 

disturbance17,18). Truong et al. also proposed using 

backstepping control combined with extended state 

observer to cope with the hydraulic manipulator 
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behavior driven by the EHS in constrained motion19). 

Many studies of using advanced control strategies for 

industrial applications using EHSs were carried out with 

more improvement in system qualification reported. 

However, regarding the above literature, the system 

qualification is realized with the nominal system 

dynamics assumed to be prior known, which is hard to 

acquire in practice. Consequently, system dynamics and 

system parametric uncertainties are challenges to be 

address up to now.

RBFNN is known as a powerful tool to approximate 

any unknown smooth function with arbitrary accuracy 

in certain conditions. Therefore, this technique is widely 

developed for high-order and nonlinear complex systems 

to cope with system dynamics uncertainties. Yang et 

al.20) employed adaptive RBFNN for robotic manipulator 

subjects to uncertain dynamics. Wu et al.21) constructed 

an adaptive fault-tolerant control-based on RBFNN for 

nonlinear nonstrict-feedback systems. The RBFNN was 

employed to compensate for the system dynamics and 

unknown parametric uncertainties. Sun et al.22) 

developed a novel finite-time control algorithm with the 

RBFNN, integrated to relax the system dynamics, for 

nonstrict-feedback systems to satisfy the output 

performance with the tracking error constraint required. 

Other reports of using the RBFNN for system dynamics 

compensation can be found in23-26). The effectiveness of 

the RBFNN was verified with the system output 

performance and its stability guaranteed via several 

simulations. However, from the representative studies in 

the literature, most works were conducted in which the 

system dynamics was partially well-determined, without 

considering the case of completely unknown system 

information. Thus, the contribution of using more 

RBFNN approximators to compensate for the system 

dynamics is still opened.

Although the RBFNN approximator can relax the 

system information, approximation error is inevitable 

due to the essential difference of model-free and 

model-based methods. Therefore, to enhance the system 

performance, adaptive laws are considerably involved to 

deal with redundant errors generated from approximation 

procedures. Theoretically, adaptive laws are designed to 

systematically adjust controller gains according to the 

system tracking error. Several attempts have been 

reported such as using additionally nonlinear function of 

error27-28), NN back-propagation laws29), or fuzzy logic 

control with designed rules30) for controller gains 

adjustment to adopt with the requirement. Among 

various techniques, an actor-critic NN (ACNN) is more 

enhanced than conventional back-propagation and more 

generalization than the fuzzy, whose rules are 

heuristically formulated depending on a designer. This 

technique is a reinforced learning algorithm and can 

help learning a policy mapping inputs to output actions 

via parallel computing the agent’s Advantage Function 

(TD error) or prediction error. The architecture of the 

ACNN consists of actor and critic processes in which 

the actor network chooses suitable actions at each time 

step while the critic network evaluates the quality of 

the given inputs state. Regarding this evaluation, the 

actor makes a decision to train the agent; thus, seeking 

out good state and avoid bad state. Wang et al.31) 

applied the ACNN to seek out the suitable PID control 

gains. Kiumarsi et al.32) developed an optimal control 

based on ACNN for nonlinear discreate-time systems to 

solve the system drift dynamics. Sun et al.33) developed 

an adaptive PID-based reinforced learning ACNN to 

accomplish a tracking performance for a non-linear 

system and verified by a simulation on an inverted 

pendulum model.

Motivated from the above analysis, this paper aims to 

first-time propose an adaptive model-free BSMC-based 

RBFNN (BSM-RBF) to deal with the difficulty in 

system parameters identification and subsequently 

achieve the tracking performance for an electro- 

hydraulic pump-controlled system (EHPS). The 

contributions of the paper are as follows: First, the 

RBFNN is utilized to completely relax the unknown 

system dynamics. Then, the BSMC, known as strong 

robust and stabilizing controller against perturbations, is 

designed to achieve the system stability and robustness 

against unexpected perturbation. Moreover, an adaptive 

law based on ACNN technique is considerably 

developed to suppress the influence of the inevitable 

error from approximation process; thus, enhancing the 

system qualification in position tracking effort. The 

stability of the closed-loop system is theoretically 
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achieved through Lyapunov theorem. 

The rest of the paper is as follows: Section 2 

dedicatedly describes the system dynamics of the EHPS. 

Then, the step-by-step proposed control strategy with 

the RBFNN and ACNN is presented in Section 3. 

Subsequently, Section 4 shows comparative simulations 

between the proposed control methodology with two 

other benchmark method, PID as a complete model-free 

control and conventional model-based BSMC, to verify 

the effectiveness of the proposed algorithm. Finally, 

worthy conclusions and potential for future development 

are discussed in Section 5.

2. System description

The simple architecture of electro-hydraulic 

pump-controlled system (EHPS) includes fixed 

displacement pump driven by an electric motor, two 

relief valves (rv1 and rv2), two check-valves (cv1 and 

cv2), and one actuator, a single-rod cylinder in this case, 

that is linked with a mass under the influence of 

external force as illustrated in Fig. 1. The movement of 

the cylinder, extraction and retraction to push or pull 

the mass, is controlled through adjusting the speed and 

rotation of the pump. The two relief valves are used for 

safety operation to protect the circuit in the case of 

over-pressure. The two check valves are equipped to 

compensate for the difference fluid between the two 

chambers or in the case when the pump cannot 

sufficiently supply fluid to the cylinder, the fluid will 

be drawn from the oil tank to supply for the cylinder. 

2.1 System physical modeling

The movement of the mass interconnected with the 

cylinder is expressed as

 1 2 1 1 2 2extmx b x b sign x F P A P A     
 

(1)

where , ,x x x   are position, velocity, and acceleration 

of the mass m, respectively; F is external force, b1 

and b2 are coefficients of the unknown frictions; P1 

and P2 are pressure in the bore-side (chamber-1) and 

rod-side (chamber-2) of the cylinder, respectively; and 

A1 and A2 are cross-section areas in the bore-side and 

rod-side of the cylinder, respectively. 

2.2 Hydraulic modeling

The pressure P1 and P2 are generated as a result of 

from the hydraulic dynamics, run by the pump. The 

dynamics of the hydraulic circuit is derived as

 1
1 1 1

10 1

e
in out L

dP Q Q Q
dt V A x


  


(2)

   2
2 2 2

20 2

e
in out L

dP Q Q Q
dt V A L x


  

  (3)

where βe is the effective bulk modulus of the oil; V10 

and V20 are lumped initial volumes including initial 

volume in the two chamber and the volume of 

pipelines; Q1in and Q1out are inlet and outlet flow rates 

of the chamber-1, respectively; Q2in and Q2out are inlet 

and outlet flow rates of the chamber-1, respectively; 

QL1 and QL2 are unknown leakage flow rates in the 

two chambers; and L is the cylinder stroke.

The inlet and outlet flow rates of the chamber-1 is 

calculated by:

1 1in cvQ D Q   (4)

2 1 1out rvQ A x Q  (5)

where D is the pump displacement; η is the volumetric 

efficiency of the pump; ω is the pump speed that is 

simplified as a proportional factor to the control signal, 

i.e., ω = Kdru with Kdr being a proportional gain and u 

being a control signal; Qcv1 and Qrv1 are the flow rates 

through the check valve cv1 and relief valve rv1, 

respectively.

The modeling for the flow rates Qcv1 and Qrv1 are 

expressed as

1
1

2 t
cv d cv

P P
Q C A




 (6)

1
1

2 t
rv d rv

P P
Q C A




 (7)

where Cd is the discharge coefficient; Acv and Arv are 

the orifice area gradient of the check valves and relief 

valves, depending on the opening of the valves, 

respectively; ρ is the oil density; and Pt is oil tank 
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pressure.

Similarly, the inlet and outlet flow rates of the 

chamber-1 is calculated by

1 2 2in cvQ A x Q  (8)

2 2out rvQ D Q   (9)

where Qcv2 and Qrv2 are the flow rates through the 

check valve cv2 and relief valve rv2, respectively.

The modeling for the flow rates Qcv1 and Qrv1 are 

expressed as

2
2

2 t
cv d cv

P P
Q C 




 (10)

2
1

2 t
rv d rv

P P
Q C 




 (11)

It is noteworthy that in the case of normal operation, 

i.e., no over-pressure occurs in the circuit, the dynamics 

of the relief valves can be ignored; thereby, the flow 

rates through these valves can consequently be ignored.

2.3 Entire system model

Let first define the system state variable as x =

   1 2 3 1 1 2 2, , , ,
TTx x x x x P A P A    . Then, regarding Eqs. 

(1) to (11), the whole system dynamics is rewritten as

1 2

2 2 2 3

3 3 3

x x
x f g x
x f g u


  
  







(12)

M

m

P1, A1 P2, A2

cv1 cv2

rv1 rv2

Qcv1 Qcv2

Qrv1 Qrv2

Fext

Fig. 1 Architecture of the EHPS system.

where 
  2 1 2

1
extf b x b sign x F

m
  

, 2

1g
m


, 

   
2 2

1 2 2 2 1 1
3 1 2

10 1 1 20 2 1 10 1 1 20 2 1

e e e e
L L

A x A x A A
f Q Q

V A x V A L x V A x V A L x
    

   
     

,  
1 1

3
10 1 1 20 2 1

e eA A
g DK

V A x V A L x
 


 
       .

The friction inside and the specifications of the 

cylinder can be obtained from manual guide of 

manufacturer; however, the parameters of the hydraulic 

components are difficult to attain, such as the initial 

volumes, internal leakages, proportional gain, and orifice 

area gradient of valves. Then these parameters should 

be approximated to deal with the hydraulic dynamics.

3. Proposed Model-free Control Method

Regarding the difficulty in determining the hydraulic 

and internal system parameters, this section proposes the 

model-free method where the RBFNN is deployed to 

take place the information of the hydraulic 

characteristics with the Levant’s differentiator integrated 

to obtain the cylinder velocity and a reinforced learning 

approach to adjust controller gains of the proposed 

ABSMC design for system qualification satisfaction.

3.1 Radial Basis Function Neural Network

The model of the hydraulic dynamics can be 

presented through the RBFNN as the followings:

*
3

*
3

T
f f f

T
g g g

f W

g W

 

 

  


 
(13)

where 
*
3 andT

fW *
3d T

gW denote ideal constant vectors; ϕf3 

and ϕg3 are radial basis function vectors regarding state 

variables. 

For any radial basis function ϕ, it is identified by:

   
2

exp
2

T
r rx c x c




  
  
 
 

(14)

where x is a vector of input variables; cr and μ are the 

vectors of center and width of the Gaussian functions, 

respectively.



Hoai-Vu-Anh Truong, Hoai-An Trinh, Kyoung-Kwan Ahn

드라이브 · 컨트롤 2022. 3   55

Then, the system dynamics is rewritten as

   

1 2

2 2 2 3

* *
3

T T
f f f g g g

x x
x f g x

x W W u   

   


   







(15)

3.2 Levant’s differentiator for velocity estimation

As the need of the cylinder velocity and acceleration 

in the backstepping process, the Levant’s differentiator 

is employed to obtain these parameters without using 

necessary sensors and avoid the noise amplification 

generated from directly conventional differentiation of 

measured position. The estimator is defined as

 
 

 

2/3

1 1 1 1 1 1 1 1 2

1/2

2 2 2 1 2 1 3

3 3 3 2

ˆ ,x z z z x sign z x z

z z z sign z z z

z sign z z







     
    
  



  

 

(16)

where α1, α2, and α3 are designed positive constants; z1, 

z2, and z3 are estimations of , ,x x x  , respectively. The 

convergence of the estimated variables to the real values 

is achieved by suitably adopting values of λ1, λ2, and λ3. 

According to34), the Levant’s differentiator can help to 

achieve finite time convergence of the estimation 

regardless the control input. Hence, the proposed control 

strategy can be developed separately with the full 

variables available.

3.3 Proposed control algorithm and stability proof

In this section, the backstepping sliding mode control 

is step-by-step designed. The proposed control scheme 

is illustrated in Fig. 2. To facilitate the control design, 

the following assumptions are introduced:

Assumption 1: The system parametric uncertainties are 

unknown but bounded, and their derivative are also 

bounded.

Assumption 2: Regarding the hardware signals 

saturation, the control input, pressures inside the circuit, 

and cylinder response are saturated. The problems of 

input saturation and output constraint are temporarily 

ignored in this study.

Firstly, let define the state error of 1 1 1de x x  , 

2 1 2 1de e x x    , 3 3 3de x x  . 

Step 1:

Define the sliding surface:

BSMC

Sliding 
surface

+
+

–

Stochastic 
action modifier

Robust 
control

xd

Hydraulic 
system

u

P1, P2

x1

Levant’s 
differentiator

RBFNN 
Approximator

r(t)

δ

Actor

Critic

Fig. 2 Proposed control scheme for the EHPS 

system.

2 1s e e  (17)

with λ is the slope of the sliding manifold. 

Choose the Lyapunov candidate V1 as

2
1

1

2
V s (18)

Taking derivative V1 yields:

 
  

1

2 2

2 2 3 3 1 1

T

d d

V ss
s e e

s f g e x x e







 

    

 



 

(19)

Then, the virtual desired force for the actuator 

dynamics is chosen as

3 2 1 1
2

1
tanhd d s s

sx f x e K s
g

 


         
  

  (20)

where Ks and ηs are control gains, δ is an arbitrarily 

small constant.

Substituting the virtual control to Eq. (19) results in:

 2
1 2 3tanhs s

sV K s s g se    (21)

As can be seen, the Lyapunov V1 is affected by the 

term g2se3, which associates with the hydraulic 
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dynamics. Then, a control law in the hydraulic inner 

loop should be designed such that the force tracking 

error is suppressed; thus, the derivative V1 becomes 

semi-negative definite and the sliding surface s1 will 

converge to zero. 

Step 2:

Choose the Lyapunov candidate V2 as

2
2 1 3

1 1 1

2 2 2
T T
f f g g

f g

V V e W W W W
 

       (22)

where
* ˆ

f f fW W W 
,

* ˆ
g g gW W W 

,
ˆ

fW and
ˆ

gW are estimated 

vectors of 
*
3fW
 
and 

*
3gW , γf3 and γg3 are constants.

Taking derivative V2 yields:

(23)

(24)

Regarding Eq. (24), to obtain the ideal results where 

the system dynamics is completely compensated, the 

control input signal u and adaptive laws for estimated 

term 
ˆ

fW and ˆ
gW are designed by:

  3 3 2 3 3 3 3
3

1 ˆ
ˆ du f x g s K e sign e
g

      (25)

(26)

(27)

Substituting the control input in Eq. (25) and 

adaptive laws (26), (27) into Eq. (24) results in:

(28)

   2 2
2 1 1 3 3 3 3 3

3 3

tanh

1 1

f gT T
f f g g

f g

T T
f f f f g g g g

f g

sV K s s K e e sign e

W W W W

e W W e u W W

 
 
 

   
 

   

 

   



   

 

(29)

It is noteworthy that the control signal u is saturated 

by |u|≤umax due to the driver and system characteristics. 

Hence, applying Young’s inequality for Eq. (29) yields:

   2 2
2 1 1 3 3 3 3 3

2 2
3

2 2
3 max

tanh

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

f gT T
f f g g

f g

f T T
f f f f f

f

g T T
g g g g g

g

sV K s s K e e sign e

W W W W

e W W W W

e u W W W W

 
 
 











   

 

         
   

         
   



   

 

 

(30)

2 2V aV  (31)

Then, the proposed algorithm is concluded to be 

uniformly ultimately bounded.

3.4 Actor critic NN for gain-scheduling

In this section, the adaptive law based on reinforced 

learning ACNN is dedicatedly derived for the controller 

gains adjustment. The control architecture of the ACNN 

is depicted in Fig. 3 with critic, actor, and stochastic 

action modifier (SAM) processes. 

Hidden 
layer

Input 
layer

Output 
layer

ηi

zi

Δzi

Δ2zi

Ki

V

Actor

Critic

...

Fig. 3 Architecture of the Actor-Critic NN.
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The Actor process is used to estimate a policy 

function and realize the mapping from the current 

system state vector to the recommended controller gains 

ΔK(t) and Δη(t). The Critic process receives a system 

state vector and an external reinforcement signal from 

the environment and produces a TD error δTD(t) and an 

estimated value function V(t). The SAM is used to 

stochastically generate the actual control gains K(t) and 

η(t) regarding the recommended parameter ΔK(t) and Δη

(t) suggested by the Actor and the estimated signal V(t) 
from the Critic.

As shown in Fig. 3, each of Actor or Critic process 

includes input layer, hidden layer, and output layer. The 

input layer assigns tracking error, its change rate and its 

acceleration as inputs, for both actor and critic neural 

networks. The output of the critic network is the 

evaluation function, here in this paper is defined as 

V(t), and the actor network returns the adjustable 

controller gains.

For the sake of simplicity, let define zi = xi – xid, 

with i =1,2 being the step ith in the BSMC process, i.e., 

if i=1, then z1 = x1 – x1d, if i=2, then z2 = x3 – x3d. 

The outputs of the actor network are ΔKi and Δηi, and 

the output of the critic networks is Vi(t). 
Define an input vector Xi = [zi(t); Δzi(t); Δ2zi(t)]T with 

Δzi(t)=zi(t)–zi(t–1), Δ2zi(t)=zi(t)–2zi(t–1)+zi(t–2). 

The Kernel function in the hidden layer is expressed 

by:

 
  2

2
exp

2

ij
j

ij

X t
t






   
 
 

(32)

where j is a number of nodes in the hidden layer, μij is 

the center of node jth in the step ith, and σij is the 

standard deviation of node jth in step ith.
The outputs of the Actor and Critic NNs are:

   

     

1

1

k

jk ijk j
j

k

i ijk j
j

K W t t

V t V t t









 


 





(33)

where k=1,2; ΔKik is adjusted gains of: K (for k=1) and 

η (for k=2) of step ith; Wijk is a weighting factor of 

output kth from node jth of step ith in the Actor NN, Vijk 

is a weighting factor of output kth from node jth of step 

ith in the Critic NN.

Then the adaptive control gains are obtained by:

  

  

,0

,0

1
0,

1 exp 2

1
0,

1 exp 2

i i i

i i i

K K K
V t

V t



   

  
        


 
        

(34)

with ξ is Gaussian distribution with mean 0, covariance 

1/(1+exp(2V(t))).
The updating laws for weighting factors Wijk and Vijk 

are implemented through TD error, δTD, evaluation 

induced from the Critic process as

       

     
   

     

1

0

0.5
,

0 1

0.5

[0,1]

TD

i i
e

e ec

i i
e

t r t V t V t

z t
r t

otherwise
r t r t r t

z t z t
r t

otherwise

 



 



   


   
    
      

 

(35)

and
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3

1

1

1

1

ik ik
ijk ijk A TD j
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ijk ijk C TD j

i ij
ij ij TD ijk j

j

i ij
ij ij TD ijk j
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K t K t
W t W t t t

t

V t V t t t

X t t
t t t V t t

i

X t t
t t t V t t

i





  


  


    




    




  


   
    

 
   


(36)

where ζA, ζC, ζμ, ζσ are learning rates for updating 

weighting factors, center and standard deviation of the 

Gaussian Kernel function, respectively.

4. Simulations

To verify the effectiveness of the proposed control 

algorithm, other three controllers of PID, ACNN PID 

(ACPID), and adaptive BSMC are involved as 

benchmarks on the EHPS, whose parameters are 

described in Table 1. The other existing model-free 
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Parameters Values Unit 
m 50 [kg]
b1
b2

1
258

[N/m/s]
[N]

βe 5.34x108 [Pa]
D1 0.04 [m]
D2 0.028 [m]
V10 4.375x10–4 [m3]
V20 2.88x10–4 [m3]
L 0.5 [m]
D 5.83x10–7 [m3/rad]
Kdr 10π [rad/s/V]

Controller Values

PID KP = 500; KI = 200; KD = 1

ACNNPID KP,0 = 500; KI,0 = 200; KD = 1
ACNN: i = 3; j = 5; k = 2;
μinit = 2xeyes(3,5); σinit = 0.5x eyes(3,5);
Winit = 10xeyes(5,2); Vinit = 5xeyes(5,1);
ζA = ζC = 0.5; ζμ = ζσ = 0.2; ε = 0.05

BSMC λ = 10; Ks = 50; ηs = 0.05; 
K3 = 50; η3 = 0.001; δ = 10–5

Proposed 
controller

BSMC initial gains: Ks,0 = 50; ηs,0 = 0.05; 
K3,0 = 50; η3,0 = 0.001; δ = 10–5
RBFNN: γf = 0.5; γg = 0.5;
        ξf = 0.5; ξg = 0.5 
Levant’s differentiator: 
α1 = 5; α2 = 10; α3 = 5
ACNN: i = 3; j = 5; k = 2;
μinit = 2xeyes(3,5); σinit = 0.5x eyes(3,5);
Winit = 10xeyes(5,2); Vinit = 5xeyes(5,1);
ζA = ζC = 0.5; ζμ = ζσ = 0.2; ε = 0.05

approaches are not considered in the comparison due to 

the different problems considered. The PID and ACPID 

controllers are involved as completely model-free 

methods without hydraulic dynamics consideration 

whereas the adaptive BSMC, conducted based on 

conventional BSMC and the same adaptive law of the 

ACNN, is a model-based method with completely 

known system parameters, including hydraulic dynamics. 

The aim is that the proposed algorithm is expected to 

exhibit better performance in comparison with complete 

model-free and asymptotically perform as same as the 

model-based method.

Table 1 EHPS’ parameters

Table 2 Controllers’ parameters

For fair comparison, the nominal switching control 

gains of both proposed controller and BSMC are set as 

the same as each other. The PID control gains are 

tuned such that the best performance can be exhibited. 

The values of all controllers are presented in Table 2. 

The simulation was implemented by using MATLAB 

environment, version 2020a with the fixed-step sampling 

time of 0.1 ms and the ODE-4 (Runge-Kutta solver) 

used.

The reference trajectory is sinusoidal function of:

x1d = 0.25 + 0.15sin(πt/5) (m) (37)

The tracking performance of the examined EHS 

under three controllers is depicted in Fig. 4, in which 

the black line denotes the desired reference trajectory 

whereas the dot-green line, the dashed-blue line, the 

dot-dashed-purple line, and the dot-dashed-red line 

present the system tracking effort under the PID, the 

ACPID, the adaptive BSMC, and the proposed control 

methodology, respectively. 

The tracking error under three control strategies is 

displayed in Fig. 5. As can be seen from the 

comparative simulations, the adaptive BSMC exhibited 

the best performance with the smallest tracking error, in 

the range of ±0.01 (m), due to the system dynamics 

completely compensated. 

The model-free PID undoubtedly returned the worst 

performance with the largest tracking error due to the 

influence of the system dynamics. 

The ACPID could achieve a better performance in 

comparison with the PID. However, the ignorance of 

system dynamics caused the tracking performance to 

fluctuate regardless of adding the ACNN adaptive laws. 

On the contrary, the proposed methodology achieved 

the nearly same as the benchmark BSMC with the 

tracking error varying in the range of ±0.008 (m) 

without fluctuation.

5. Conclusion

This paper presented an adaptive model-free BSM- 

RBF control for the EHS to solve the difficulty in 

highly nonlinear system and then achieve position 

tracking performance. The existing problem of system 
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Fig. 5 Tracking errors under four controllers.

dynamics and parametric uncertainties were addressed 

by using the RBFNN approximator with the Levant’s 

differentiator considered to obtain unmeasured signal of 

velocity. Then the proposed BSM-RBF control was 

formulated with adaptive law developed based on the 

ACNN technique to adopt with the system behavior. 

The stability of the closed-loop system is guaranteed 

through Lyapunov proof. The comparative simulation 

result with the other two benchmarks evidently indicated 

the superior effectiveness of the proposed algorithm. 

However, the existing shortcomings of input saturation 

and output constraint are not included in this regard. 

Due to the significant influences when implementing on 

real physical systems, these problems will be clarified 

in the next research.

As the prominent potential of the EHSs for industrial 

applications and shortcoming of model-free control 

improvement, this paper can be considered as a premise 

for further development with more advanced and 

integrated techniques.
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