• Title/Summary/Keyword: Model sequencing

Search Result 286, Processing Time 0.027 seconds

A SCORM-based e-Learning Process Control Model and Its Modeling System

  • Kim, Hyun-Ah;Lee, Eun-Jung;Chun, Jun-Chul;Kim, Kwang-Hoon Pio
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2121-2142
    • /
    • 2011
  • In this paper, we propose an e-Learning process control model that aims to graphically describe and automatically generate the manifest of sequencing prerequisites in packaging SCORM's content aggregation models. In specifying the e-Learning activity sequencing, SCORM provides the concept of sequencing prerequisites to be manifested on each e-Learning activity of the corresponding tree-structured content organization model. However, the course developer is required to completely understand the SCORM's complicated sequencing prerequisites and other extensions. So, it is necessary to achieve an efficient way of packaging for the e-Learning content organization models. The e-Learning process control model proposed in this paper ought to be an impeccable solution for this problem. Consequently, this paper aims to realize a new concept of process-driven e-Learning content aggregating approach supporting the e-Learning process control model and to implement its e-Learning process modeling system graphically describing and automatically generating the SCORM's sequencing prerequisites. Eventually, the proposed model becomes a theoretical basis for implementing a SCORM-based e-Learning process management system satisfying the SCORM's sequencing prerequisite specifications. We strongly believe that the e-Learning process control model and its modeling system achieve convenient packaging in SCORM's content organization models and in implementing an e-Learning management system as well.

Prediction Model with a Logistic Regression of Sequencing Two Arrival Flows (합류하는 두 항공기간 도착순서 결정에 대한 로지스틱회귀 예측 모형)

  • Jung, Soyeon;Lee, Keumjin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.42-48
    • /
    • 2015
  • This paper has its purpose on constructing a prediction model of the arrival sequencing strategy which reflects the actual sequencing patterns of air traffic controllers. As the first step, we analyzed a pair-wise sequencing of two aircraft entering TMA from different entering points. Based on the historical trajectory data, several traffic factors such as time, speed and traffic density were examined for the model. With statistically significant factors, we constructed a prediction model of arrival sequencing through a binary logistic regression analysis. With the estimated coefficients, the performance of the model was conducted through a cross validation.

Balancing and Sequencing in Mixed Model Assembly Lines Using an Endosymbiotic Evolutionary Algorithm (내공생 진화알고리듬을 이용한 혼합모델 조립라인의 작업할당과 투입순서 결정)

  • 김여근;손성호
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.4
    • /
    • pp.109-124
    • /
    • 2001
  • This paper presents a new method that can efficiently solve the integrated problem of line balancing and model sequencing in mixed model assembly lines (MMALs). Line balancing and model sequencing are important for an efficient use of MMALs. The two problems of balancing and sequencing MMALs are tightly related with each other. However, In almost all the existing researches on mixed-model production lines, the two problems have been considered separately. In this research, an endosymbiotic evolutionary a1gorithm, which is a kind of coevolutionary a1gorithm, is adopted as a methodology in order to solve the two problems simultaneously. This paper shows how to apply an endosymbiotic evolutionary a1gorithm to solving the integrated problem. Some evolutionary schemes are used In the a1gorithm to promote population diversity and search efficiency. The proposed a1gorithm is compared with the existing evolutionary algorithms in terms of solution quality and convergence speed. The experimental results confirm the effectiveness of our approach.

  • PDF

Genetic Algorithm for Balancing and Sequencing in Mixed-model U-lines (혼합모델 U라인에서 작업할당과 투입순서 결정을 위한 유전알고리즘)

  • 김동묵
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.2
    • /
    • pp.115-125
    • /
    • 2004
  • This paper presents a new method that can efficiently solve the integrated problem of line balancing and model sequencing in mixed-model U-lines (MMULs). Balancing and sequencing problems are important for an efficient use of MMULs and are tightly related with each other. However, in almost all the existing researches on mixed-model production lines, the two problems have been considered separately. A genetic algorithm for balancing and sequencing in mixed-model U line is proposed. A presentation method and genetic operators are proposed. Extensive experiments are carried out to analyze the performance of the proposed algorithm. The computational results show that the proposed algorithm is promising in solution quality.

Sequencing the Mixed Model Assembly Line with Multiple Stations to Minimize the Total Utility Work and Idle Time

  • Kim, Yearnmin;Choi, Won-Joon
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • This paper presents a fast sequencing algorithm for a mixed model assembly line with multiple workstations which minimize the total utility work and idle time. We compare the proposed algorithms with another heuristic, the Tsai-based heuristic, for a sequencing problem that minimizes the total utility works. Numerical experiments are used to evaluate the performance and effectiveness of the proposed algorithm. The Tsai-based heuristic performs best in terms of utility work, but the fast sequencing algorithm performs well for both utility work and idle time. However, the computational complexity of the fast sequencing algorithm is O (KN) while the Tsai-based algorithm is O (KNlogN). Actual computational time of the fast sequencing heuristic is 2-6 times faster than that of the Tsai-based heuristic.

Mixed-Model Sequencing Using Genetic Algorithms with Multiple Evaluation Criteria (다목적 유전 알고리듬을 이용한 혼합모델 조립라인의 최적 생산순서계획)

  • Kim, Yearn-Min;Kim, Young-Jin
    • IE interfaces
    • /
    • v.13 no.2
    • /
    • pp.204-210
    • /
    • 2000
  • This paper deals with the problem of mixed-model sequencing on an assembly line. In this sequencing problem we want to minimize the risk of the conveyor stoppage and the total utility work. This paper applies genetic algorithm to solve the mixed-model sequencing problem which is formulated as an integer programming. The solution we get from this algorithm is compared with the solution of Tsai(1995)'s.

  • PDF

Heuristic Method for Sequencing Problem in Mixed Model Assembly Lines with Setup Time (준비시간이 있는 혼합모델 조립라인에서 투입순서문제를 위한 탐색적 방법)

  • Hyun, Chul-Ju
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.11a
    • /
    • pp.35-39
    • /
    • 2008
  • This paper considers the sequencing of products in mixed model assembly lines. The sequence which minimizes overall utility work in car assembly lines reduce the cycle time, the number of utility workers, and the risk of conveyor stopping. The sequencing problem is solved using Tabu Search. Tabu Search is a heuristic method which can provide a near optimal solution in real time. Various examples are presented and experimental results are reported to demonstrate the efficiency of the technique.

  • PDF

Scorm-based Sequencing & Navigation Model for Collaborative Learning (Scorm 기반 협력학습을 위한 시퀀싱 & 네비게이션 모델)

  • Doo, Chang-Ho;Lee, Jun-Seok
    • Journal of Digital Convergence
    • /
    • v.10 no.6
    • /
    • pp.189-196
    • /
    • 2012
  • In this paper, we propose a Scorm-based Sequencing & Navigation Model for Collaborative Learning. It is an e-Learning process control model that is used to efficiently and graphically defining Scorm's content aggregation model and its sequencing prerequistites through a formal approach. To define a process based model uses the expanded ICN(Information Control Net) model. which is called SCOSNCN(SCO Sequencing & Navigation Control Net). We strongly believe that the process-driven model delivers a way of much more convenient content aggregating work and system, in terms of not only defining the intended sequence and ordering of learning activities, but also building the runtime environment for sequencing and navigation of learning activities and experiences.

A Sequencing Problem in Mixed-Model Assembly Line Including a Painting Line

  • Yoo, J.K.;Moriyama, T.;Shimizu, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1118-1122
    • /
    • 2005
  • In order to keep production balance at a mixed-model assembly line and a painting line, large WIP(Work- In-Process) inventories are required between two lines. To increase the efficiency of line handling through reducing the inventories under this circumstance, this paper concerns with a sequencing problem for a mixed-model assembly line that includes a painting line where the uncertain elements regarding the defective products exist. Then, we formulate a new type of the sequencing problem minimizing the line stoppage time and the idle time with forecasting the supply time of the products from the painting line. Finally, we examine the effectiveness of the proposed sequencing through computer simulations.

  • PDF

Sequencing Problem to Keep a Constant Rate of Part Usage In Mixed Model Assembly Lines : A Genetic Algorithm Approach (혼합모델 조립라인에서 부품사용의 일정률 유지를 위한 생산순서 결정 : 유전알고리즘 적용)

  • Hyun, Chul-Ju
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.4
    • /
    • pp.129-136
    • /
    • 2007
  • This paper considers the sequencing of products in mixed model assembly lines under Just-In-Time (JIT) systems. Under JIT systems, the most important goal for the sequencing problem is to keep a constant rate of usage every part used by the systems. The sequencing problem is solved using Genetic Algorithm Genetic Algorithm is a heuristic method which can provide a near optimal solution in real time. The performance of proposed technique is compared with existing heuristic methods in terms of solution quality. Various examples are presented and experimental results are reported to demonstrate the efficiency of the technique.