International Journal of Naval Architecture and Ocean Engineering
/
제7권6호
/
pp.979-994
/
2015
The mode shapes of a segmented hull model towed in a model basin were predicted using both the Proper Orthogonal Decomposition (POD) and cross random decrement technique. The proper orthogonal decomposition, which is also known as Karhunen-Loeve decomposition, is an emerging technology as a useful signal processing technique in structural dynamics. The technique is based on the fact that the eigenvectors of a spatial coherence matrix become the mode shapes of the system under free and randomly excited forced vibration conditions. Taking advantage of the simplicity of POD, efforts have been made to reveal the mode shapes of vibrating flexible hull under random wave excitation. First, the segmented hull model of a 400 K ore carrier with 3 flexible connections was towed in a model basin under different sea states and the time histories of the vertical bending moment at three different locations were measured. The measured response time histories were processed using the proper orthogonal decomposition, eventually to obtain both the first and second vertical vibration modes of the flexible hull. A comparison of the obtained mode shapes with those obtained using the cross random decrement technique showed excellent correspondence between the two results.
In this study, a method predicting the displacement responseof structures from the measured dynamic strain signal is proposed by using a mode decomposition technique. Dynamic loadings including wind and seismic loadings could be exerted to the bridge. In order to examine the bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. Because it may be not easy for the displacement response to be acquired directly on site, an indirect method to predict the displacement response is needed. Thus, as an alternative for predicting the displacement response indirectly, the conversion of the measured strain signal into the displacement response is suggested, while the measured strain signal can be obtained using fiber optic Bragg-grating (FBG) sensors. To overcome such a problem, a mode decomposition technique was used in this study. The measured strain signal is decomposed into each modal component by using the empirical mode decomposition(EMD) as one of mode decomposition techniques. Then, the decomposed strain signals on each modal component are transformed into the modal displacement components. And the corresponding mode shapes can be also estimated by using the proper orthogonal decomposition(POD) from the measured strain signal. Thus, total displacement response could be predicted from combining the modal displacement components.
본 연구에서는 모드분해기법을 이용한 변형률신호로부터 변위응답추정 방법을 개발하였다. 일반적으로 교량의 안정성평가는 완공 후에 초점이 맞추어져 있다. 하지만 가설 중에도 풍하중과 지진하중과 같은 동적하중에 노출되어 있으며, 이런 동적하중에 대한 안정성을 검토하기 위해 교량의 안정성 평가에 있어 중요한 인자인 변위를 추정하는 것이 중요하다. 그러나 건설현장에서의 적절한 변위측정 방법의 부재로 인하여 대형구조물의 전체적인 변위를 측정할 수 없는 것이 현실이다. 본 연구에서는 간접적으로 변위를 추정하는 방법인 변형률로 변위를 추정하는 방법을 제시하였으며, 광섬유 브래그 격자 센서(fiber optic Bragg-grating sensor)를 사용하여 변형률을 계측하였다. 기존에도 FBG센서를 이용한 변위추정 방법이 있었으며 기존의 방법으로는 정적하중에 대한 변위추정은 가능하였으나 고차 모드의 변형률신호와 노이즈의 영향 때문에 동적하중에 대한 변위추정은 많은 오차가 발생하여 정확한 변위추정이 어려웠다. 이런 오차를 줄이는 방법으로 모드분해기법을 사용하였다. 모드분해기법은 변형률신호로부터 proper orthogonal decomposition(POD)을 이용하여 추정한 모드형상과 empirical mode decomposition(EMD)을 이용하여 모드 분해한 변형률신호로 모드별 변위응답을 추정하고, 구조물의 주요 모드에 대한 변위응답을 합하여 전체변위응답을 추정하는 방법이다. 제안한 모드분해기법을 검증하기 위해 실내모형실험을 수행하였다.
Signal decomposition is a computational technique that dissects a signal into its constituent components, providing supplementary information. In this study, the capability of two common signal decomposition techniques, including wavelet-based and empirical mode decomposition, on preterm birth classification was investigated. Ten time-domain features were extracted from the constituent components of electrohysterogram (EHG) signals, including EHG subbands and EHG intrinsic mode functions, and employed for preterm birth classification. Preterm birth classification and anticipation are crucial tasks that can help reduce preterm birth complications. The computational results show that the preterm birth classification obtained using wavelet-based decomposition is superior. This, therefore, implies that EHG subbands decomposed through wavelet-based decomposition provide more applicable information for preterm birth classification. Furthermore, an accuracy of 0.9776 and a specificity of 0.9978, the best performance on preterm birth classification among state-of-the-art signal processing techniques, were obtained using the time-domain features of EHG subbands.
In this study, a method to estimate the suspension bridge deflection is developed using mode decomposition technique. In order to examine the suspension bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. However, it is recognized that any measurement of movement for suspension bridges may be difficult for the absence of proper methods to measure the displacement response on site. This study aims at suggesting a method to estimate the displacement response from the measured strain signals in an indirect way to predict the displacement response, not a direct way to measure the displacement response. Additionally, by applying the FBG sensors with multi-point measurements not influenced by electric noise, it can be expected that the technique would be applicable to infrastructures.
In this paper, an adaptive MEMD based modal identification technique for linear time-invariant systems is proposed employing multiple vibration measurements. Traditional empirical mode decomposition (EMD) suffers from mode-mixing during sifting operations to identify intrinsic mode functions (IMF). MEMD performs better in this context as it considers multi-channel data and projects them into a n-dimensional hypercube to evaluate the IMFs. Using this technique, modal parameters of the structural system are identified. It is observed that MEMD has superior performance compared to its traditional counterpart. However, it still suffers from mild mode-mixing in higher modes where the energy contents are low. To avoid this problem, an adaptive filtering scheme is proposed to decompose the interfering modes. The Proposed modified scheme is then applied to vibrations of a reinforced concrete road bridge. Results presented in this study show that the proposed MEMD based approach coupled with the filtering technique can effectively identify the parameters of the dominant modes present in the structural response with a significant level of accuracy.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권12호
/
pp.5955-5977
/
2018
Performance of the interpolation algorithm used in the technique of bi-dimensional empirical mode decomposition directly affects its popularization and application, so that the researchers pay more attention to the algorithm reasonable, accurate and fast. However, it has been a lack of an adaptive interpolation algorithm that is relatively satisfactory for the bi-dimensional empirical mode decomposition (BEMD) and is derived from the image characteristics. In view of this, this paper proposes an image interpolation algorithm based on the particle swarm and fractal. Its procedure includes: to analyze the given image by using the fractal brown function, to pick up the feature quantity from the image, and then to operate the adaptive image interpolation in terms of the obtained feature quantity. All parameters involved in the interpolation process are determined by using the particle swarm optimization algorithm. The presented interpolation algorithm can solve those problems of low efficiency and poor precision in the interpolation operation of bi-dimensional empirical mode decomposition and can also result in accurate and reliable bi-dimensional intrinsic modal functions with higher speed in the decomposition of the image. It lays the foundation for the further popularization and application of the bi-dimensional empirical mode decomposition algorithm.
In this work we use the mode decomposition technique employing chirplet transform, which is able to separate the individual modes from dispersive and multimodal waveform measured with the magnetostrictive sensor. The mode decomposition technique is also used to estimate the time-frequency centers and individual energies of the reflection, which would be used to locate and characterize axial defects. The arrival times of the separated modes are calculated and the axial defect lengths can be evaluated by using the estimated arrival time. Results from an experiment on a carbon steel pipe are presented and it is shown that the accurate and quantitative defect characterization could become enabled using the proposed technique.
Proper orthogonal decomposition is a statistical pattern analysis technique for finding the dominant components, called the proper orthogonal modes, in ensembles of spatially distributed data. We present recent ideas based on proper orthogonal decomposition (POD) and detailed experiments that yield new perspectives into the microscale structures. The linearized modeling technique based on POD is very useful to show the principal characteristics of the complex dynamic responses.
일반적으로 대형구조물의 건전성평가에 있어 중요한 인자인 변위를 추정함으로써 구조물의 성능 저하 및 노후도를 판단하는 근거가 된다. 그러나 변위응답의 계측이 중요함에도 불구하고 계측 방법의 부재로 말미암아 현수교와 같은 대형구조물의 변위응답을 측정하는 방법이 용이치 않은 것이 현실이다. 본 논문에서는 변형률신호로부터 변위응답을 추정하는 방법인 모드분해기법을 제시하였다. 모드분해기법은 등가정적 변위응답과 구조물의 주요거동을 나타내는 저차모드의 변위응답을 합하여 최종변위응답을 추정하는 방법이다. 변형률신호의 계측시 전기저항식 변형률센서를 사용할 경우 전기적 노이즈 문제가 발생할 소지가 크며, 측점이 많아질수록 경제적 부담감이 커진다. 이런 문제점을 극복하기 위하여 전기적 노이즈의 영향이 없고 다중측정이 가능한 광섬유 브래그 격자 센서를 사용하였다. 현수교와 플레이트거더교의 동재하실험을 통하여 모드분해기법의 사용성을 검토하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.