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ABSTRACT: The mode shapes of a segmented hull model towed in a model basin were predicted using both the Proper 
Orthogonal Decomposition (POD) and cross random decrement technique. The proper orthogonal decomposition, which 
is also known as Karhunen-Loeve decomposition, is an emerging technology as a useful signal processing technique in 
structural dynamics. The technique is based on the fact that the eigenvectors of a spatial coherence matrix become the 
mode shapes of the system under free and randomly excited forced vibration conditions. Taking advantage of the sim-
plicity of POD, efforts have been made to reveal the mode shapes of vibrating flexible hull under random wave ex-
citation. First, the segmented hull model of a 400 K ore carrier with 3 flexible connections was towed in a model basin 
under different sea states and the time histories of the vertical bending moment at three different locations were meas-
ured. The measured response time histories were processed using the proper orthogonal decomposition, eventually to 
obtain both the first and second vertical vibration modes of the flexible hull. A comparison of the obtained mode shapes 
with those obtained using the cross random decrement technique showed excellent correspondence between the two 
results. 
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INTRODUCTION 

The structural safety of large seagoing merchant ships is threatened by the presence of a hydroelastic hull girder response, 
i.e. springing and whipping. To improve the understanding on this complicated fluid-structure interaction problem, eventually 
minimizing the risks that may be taken by ship designers and owners, considerable research efforts have been devoted over the 
past decade. Most research activities in this area may be classified into two categories, i.e., computational method and ex-
perimental methods. The recent achievements of the computation method on the hydroelasticity (Price and Temarel, 1982; 
Jensen and Dogliani, 1996; Wu and Moan, 1996; Malenica et al., 2003; Hirdaris et al., 2003; Iijima et al., 2008; Kim et al., 2009; 
Kim et al., 2013; Malenica et al., 2013; Senjanovic et al., 2014) have been rather dramatic due to the rapid increase in computa-
tional power. On the other hand, both model basin test and full scale measurement have also been actively conducted due to the 
limitations of the computation method (Remy et al., 2006; Iijima et al., 2009; Miyake et al., 2009; Oka et al., 2009; Hong et al., 
2011). Whatever the methodology is, the dynamic modal parameters, such as natural frequencies, damping coefficients and 
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mode shapes, are of prime interest from the viewpoint of the dynamic response of a vibrating hull structure. Regarding the 
experimental method, without considering its scale, these dynamic modal parameters need to be extracted from the response of 
a vibrating ship structure because they are a priori unknowns. This becomes even more important when analyzing the full scale 
measurement data (Hirdaris et al., 2009; Miyake et al., 2010; Drummen et al., 2009; Jensen et al., 2009), where the dynamic 
modal parameters should be extracted from the measured response only. The output only approach is inevitable for the full 
scale measurement data due to the accuracy issue of the external excitation, i.e. incoming waves, which are not straightforward 
to measure for seagoing vessels. 

Kim and Park (2013) examined the modal parameter identification of hydroelastically responding ship structure. They 
applied the so called random decrement technique to the measured Vertical Bending Moment (VBM) time history of a 
segmented hull model and extracted both the natural frequencies and damping ratios under wet towing conditions. They 
reported that the derived natural frequencies did not show any significant discrepancy compared to those obtained by still water 
wet hammering test results, but the damping ratios under wet towing conditions were up to 20% higher than those obtained by 
wet hammering test. Mariani and Dessi (2012) evaluated an estimation of the mode shapes of a vibrating hull structure on a 
small scale model. They applied the Proper Orthogonal Decomposition (POD) method to extract the mode shapes of a seg-
mented hull model connected to a backbone structure running from bow to stern. The first, second and third vertical mode shapes 
were estimated by processing both the measured VBM and acceleration using POD, and they determined that both matched 
each other well. This paper is an extension of the work by Kim and Park (2013) targeting the identification of wet mode shapes 
of a segmented hull model using both the proper orthogonal decomposition method and Cross Random Decrement Technique 
(CRDT).  

The POD is a statistics-based order reduction technique through which the motion of a dynamic system of large DOF can 
be approximated by the combination of lower order descriptions. The basic principle behind this method is that the eigenvector 
of a spatial coherence matrix of certain physical quantities measured at several different locations becomes the mode shapes, or 
basis function of the system, which may then be used in the Galerkin procedure. This is an important technique for data reduc-
tion, feature extraction, and it has been used widely in many engineering fields, such as image processing, signal analysis, system 
identification and adaptive control etc. The starting engineering application of the POD was based on an analysis of the spatial 
distribution of turbulence in a fluid field (Lumley, 1970), and later an extension was made toward the mode shape extraction of 
a vibrating structure (Feeny and Kappagantu, 1998; Feeny, 2002). Another interesting technique that can be used to extract the 
mode shapes is CRDT. This technique was developed originally by Cole (1968; 1971) in the form of an ‘auto’ random decre-
ment to identify the dynamic characteristics and in-service damage detection of the space structure from the measured response 
only. Ibrahim and Mikulcik (1977) later introduced the concept of the cross random decrement signature that enabled the iden-
tification of the mode shapes of a multi-DOF system. 

In this paper, efforts have been made to estimate the mode shapes of a segmented hull model towed in the model basin 
using both POD and CRDT. Regarding POD, the VBM time histories measured at different ship cross sections were processed 
and the spatial coherence matrix was obtained. The eigenvector of the coherence matrix was derived numerically, eventually 
becoming the mode shapes of the system under random excitation conditions. For CRDT, the cross random decrement sig-
natures, which represent the free decay signal of the measured VBM at different locations, were derived by taking the condi-
tional ensemble average of the signal under a certain triggering conditions. Successive ensemble averaging finally led to the 
converged free decay signal due to the randomness of the response with zero-mean Gaussianity. 

THEORETICAL BACKGROUND 

Proper orthogonal decomposition 

The POD begins from the spatial coherence matrix of a certain physical quantity, the VBM at different locations in this 
particular case. The ensemble matrix of measured VBM at M different locations along the ship is defined in Eq. (1).  

1 2 3[ , , ..., ]M=X x x x x  (1) 

where the column vector, , stands for the VBM time history of N discrete time intervals, and can be represented by Eq. (2). 
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1 2 3[ ( ), ( ), ( )..., ( )]T
i i i i i Nx t x t x t x t=x  (2) 

The equation of motion of a freely vibrating undamped multi DOF spring mass system is given as Eq. (3), where both M  
and K are the symmetric positive definite square matrix. 

+ =Mx Kx 0&&  (3) 

The system’s modal vectors are orthonormal with respect to the mass and stiffness matrix once normalized in such a way 
that TV MV = I  or T

i j ijδ=v Mv , where V  is the normal mode matrix of the system. A coordinate transformation of 
1/ 2−=x M q  leads Eq. (3) to (4). 

1/ 2 1/ 2− −+ =q M KM q 0&&  (4) 

The advantage of Eq. (4) lies on the fact that the stiffness matrices are still symmetrical and the mass matrix is the identity. 
Eq. (4) shows that the equation of motion can be transformed to an equivalent system, whose mass matrix is the identity one 
and its modal vector satisfies the orthonormality condition, i.e., T

i j ijδ=v v . Now suppose that the solution of Eq. (5) is given 
as a linear combination of the normal modes so that one has 

1 1 2 2( ) ( ) ( ) ( )M Mt e t e t e t= + + +x v v vL  (5) 

where ( )ie t  is the time modulation of the ith mode. The ensemble matrix given in Eq. (1) has the form, 

1 2 1 1 2 2[ ( ), ( ), , ( )] [ ]T T T T
N M Mt t t= = + + +X x x x e v e v e vL L , (6) 

where the row vector ie  is defined as 1 2[ ( ), ( ), , ( )]i i i Ne t e t e tL . The spatial coherence matrix post multiplied by jv  gives, 

1 1 2 2 1 1 2 2
1 1 [ ] [ ]T T T T T T T

M M M MN N
= = + + + + + +T

j j jRv X Xv e v e v e v e v e v e v vL L  (7) 

where the matrix, R , is defined as a spatial coherence matrix, i.e. 
1
N

TX X . Each entry of the coherence matrix, ijR , is the  

inner product of the two measured VBM time histories at locations i and j, which indicates the correlation of the VBM of two 
locations. Considering the orthonormality of the eigenvectors, the far right term of Eq. (7) becomes, 

1 1 2 2
1 ( )T T T

j j M M jN
= + +jRv v e e v e e v e eL  (8) 

All terms of Eq. (8) except for T
j j jv e e  will disappear because of the distinct frequency of each vibration mode when the 

signal record length is long enough. Hence, 

1lim 0T
i i jN

when i j
N→∞

= ≠v e e  (9) 
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Taking advantage of Eq. (9), Eq. (8) finally becomes, 

T
i j

j jN
λ= =j

e e
Rv v v  (10) 

Eq. (10) implies that the eigenvectors of the coherence matrix, R , which is called the Proper Orthogonal Mode (POM), 
becomes the modal vector of the given system that the measurement was made on. The relationship given as Eq. (10) holds 
only if the mass matrix is known, otherwise the orthonomality condition of the eigenvectors cannot be utilized. On the other 
hand, it also has been highlighted by several authors that the most excited mode can always be obtained based on Eq. (10), even 
in the case that the mass matrix is unknown, which is usually the case (Mariani and Dessi, 2012).  

Eq. (10) holds only when the external excitation is absent, i.e., free vibration case, but most of the real world situations is a 
forced vibration. In the case that the external harmonic excitation is present, different mode shapes may be excited with the 
same frequency so that Eq. (9) would not hold any longer. Nevertheless, if one of the modes resonates with a predominantly 
large magnitude, the POM becomes a good approximation of the mode shape. The accuracy of the approximation depends 
strongly on the relative magnitude of the resonant vibration and non-resonant one. The hydroelastic response of a flexible ship 
is a resonance dominant one with relatively small damping, which can be confirmed in the frequency domain with sharp peaks 
right on the natural frequency of the system. Therefore, the derived POMs based on Eq. (10) is a good approximation of the 
mode shapes of vibrating ship structure. 

Random decrement technique 

The random decrement technique is a simple but very powerful method for identifying a dynamic system, and is used 
widely for modal parameter identification, where prior information on excitation is unknown. Assuming that the signals, ( )x t  
and ( )y t , represent VBM at two different locations along the ship length, the auto and cross random decrement signature is 
defined as the expected value of the given signal ( )x t  under certain conditions, which are denoted as ( )x tT . 

( )( ) [ ( ) | ]xx x tD E x t Tτ τ= +  

( )( ) [ ( ) | ]xy x tD E y t Tτ τ= +  (11) 

( )xxD τ  is the auto random decrement signature and ( )xyD τ  is the cross random decrement signature, and they both 
become the free decay signal at two different locations, x  and y . The idea behind Eq. (11) is to cancel out the particular 
solution of the dynamic response of a given system by taking the conditional average across a large number of ensembles, 
leaving the homogeneous solution to be averaged. While taking the average across the ensembles, a certain condition is 
imposed so that the cancellation can be achieved with a finite number of ensembles. 

Assuming that the process is ergodic, which means the stationarity of the process, Eq. (11) can be rewritten as Eq. (12). 
Hence, the conditional averaging across the ensembles can be made within a single sample realization. 

( )
1

1( ) ( ) |
i

N

xx i x t
i

D x t T
N

τ τ
=

= +∑
 

( )
1

1( ) ( ) |
i

N

xy i x t
i

D y t T
N

τ τ
=

= +∑  (12) 

where N is the number of points in the random process that satisfy the condition, ( )x tT . The condition, ( )x tT , under which the 
mean values of ( )x t  and ( )y t  are taken, is called the triggering condition, and there are several different types, such as level 
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crossing triggering, local extremum triggering, positive point triggering, and zero crossing triggering, etc. In this study, the level 
crossing triggering condition was applied to extract the free decay signal from the measured one owing to its simplicity, and can 
be rewritten in a general form as Eq. (13). 

( ) { ( ) , ( ) }T
x tT a x t a a x t= ≤ < +Δ −∞≤ <∞&  (13) 

where a  is the triggering level and aΔ  is the triggering range, which was set to be infinitesimally small. If the triggering 
range, aΔ , becomes finite, the level crossing triggering becomes positive point triggering. 

EXPERIMENT 

In the experimental study, the scaled segmented model of the Very Large Ore Carrier (VLOC) of a 400,000 ton dead weight 
was tested in the model basin. Table 1 lists the main particulars of the tested ship. 

 
Table 1 Main characteristics of the 400,000 DWT ore carrier. 

Items Full scale Model scale 

Length between perpendiculars [m] 350.00 5.83 

Breadth molded [m] 65.00 1.08 

Depth molded [m] 30.40 0.51 

Displacement [tones] – Normal ballast 209,623 0.97 

Mean draft [m] 11.44 0.19 

 
Fig. 1 shows the test model floating on the undisturbed free surface (Selvik, 2010). The scale of the model, i.e., the ratio of 

the length dimension between the model and full scale ship was 1/60, which was determined based on the minimum wave 
quality of the model basin. The Froude scale law was applied to scale-down both the length and time. Therefore, the Froude 
numbers of the full and model scales were set to be same as Eq. (14). 

fm

m f

VV
gL gL

=  (14) 

where mV  and fV are the speed of the model and full scale ship, respectively. mL  and fL are the length of the model and 
full scale ship, respectively, and g  is the gravitational acceleration. The relationship between the full and model scales gives 
the speed of the model as well as the frequency of the waves, as expressed in Eq. (15). 

m
m f f

f

L
V V V

L
= = Λ

 

1f
m f f

m

L
L

ω ω ω= =
Λ

 (15) 

where mω  and fω are the wave frequency of the model and full scale, respectively, and Λ is the scale ratio. The scaling of 



984 Int. J. Nav. Archit. Ocean Eng. (2015) 7:979~994 

the flexibility is obtained by combining the frequency of a homogeneous beam and the wave frequency relation given in Eq. 
(15). Therefore, the bending stiffness of the model is 

5
m

m f
f

EI EI
ρ
ρ

=
Λ

 (16) 

where EI is the bending stiffness and ρ is the density of the material. 
The entire hull is divided into 4 rigid sections. Three adjustable flexible connections, at L/4, 2L/4 and 3L/4, were placed 

between the sections so that the flexibility of the ship could be reproduced accurately in the scaled model. Only the vertical 
bending flexibility was considered in the model because the vibratory response of a hull is expected to be the maximum when it 
moves forward across the head wave. The mass distribution of the real ship was also reflected in the model by adjusting the lo-
cation of a mass block inside the model. Load cells were installed with connections and the VBM and shear forces were meas-
ured during the test with its sampling frequency to be 400 Hz. 

 

        
  (a) Test model in a model basin.               (b) Connecting part between the segments. 

Fig. 1 Test model (1/60 scale). 
 
In order for the scaled model to be the representative of the real ship structure, the dynamic characteristics of the full scale 

ship, such as the natural frequencies and damping ratio, need to be realized accurately in the model test. The expected wet 
natural frequencies of the model under ballast conditions was 0.48 Hz and 0.98 Hz for the first and second vertical vibration 
modes, respectively, according to the Froude scale law. The stiffness of the adjustable flexible connections was changed until 
the wet natural frequency of the model matched the target value. The wet natural frequencies of the model were obtained using 
a wet hammering test, i.e., hitting the stern of the model with an impact load. The actual wet natural frequencies of the first 
and second vertical modes achieved through the wet hammering test were 0.47 Hz and 1.07 Hz, respectively. Because the first 
vertical mode is the most influential, the match between the target and achieved wet natural frequency of the first vertical mode 
was considered most important. No intentional calibration was made for the damping ratio of the model because the damping 
ratio of the full scale ship is unknown. The damping ratio that was derived from the hammering test was approximately 0.4~ 
0.6% under wet conditions. A part of it was structural damping and the remaining part is hydrodynamic damping. The model 
ship was towed in the model basin, where the waves of given spectra are generated. The wave spectra are in the form of the 
JONSWAP spectrum (DNV, 2000), with its parameters are set to be 1, 2.5 , 9.2 sec, 14.5 s pH m T V ktsγ = = = = . The test 
was carried out for a minimum of 40 minutes in the model scale time, which is long enough to derive meaningful statistical 
values.  

Fig. 2 shows a part of the bending moment time history at L/4 for a sea state. Fig. 2(a) shows the measured time history, 
where the mean static bending moment was removed, and Fig. 2(b) and (c) present the filtered signal with the frequency bands 
covering both the first and second natural frequencies of the model ship.  
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   (a) VBM time history. 

 
  (b) Filtered VBM time history (0.35 Hz<f<0.8 Hz). 

 
    (c) Filtered VBM time history (0.8 Hz<f<3.0 Hz). 

    Fig. 2 Bending moment time history at L/4. 

MODE SHAPE EXTRACTION 

Proper orthogonal decomposition 

The eigenvectors of the vibrating hull structure were derived using the relationship between the spatial coherence matrix 
and the system’s eigenvectors given as Eq. (10). A total of 3 eigenvectors could be derived from eigenvalue analysis because 
the spatial variation of the vertical bending moment was measured at three discrete points.  

 

 
                     (a) 1st mode.                                      (b) 2nd mode. 

Fig. 1 Mode shapes calculated by POD method. 
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On the other hand, due to the limited number of segmentations of the hull, the 4 node vertical bending vibration mode 
was almost absent so that only 2 and 3 node vibrations were considered. Fig. 3 shows the mode shapes of the vertical bend-
ing moment obtained using the POD. The 1st and 2nd modes corresponds to 2 node and 3 node vertical bending modes, 
respectively.  

Fig. 4 shows the time history of the decomposed vertical bending moments for both 1st and 2nd modes, which were re-
constructed using the obtained eigenvectors and eigenvalues. Decomposition of the signal is based on the relationship given 
in Eq. (5), where the total system response is expressed as the summation of each mode shape multiplied by the correspond-
ing principal coordinate. The time evolution of each mode can be derived easily by projecting the total system response to 
each modal vector, which is orthogonal to all the others. At the midship location, the magnitude of the vertical bending moment 
of the 1st mode is the largest among others, whereas it becomes almost zero for the 2nd mode, as expected, considering the 
deformation shape of 3 node vibration mode of the free-free beam-like structure. An interesting aspect of the 2nd mode is that 
the vertical bending moment at L/4 is slightly larger than that at 3L/4 meaning that the perfect symmetry is violated in terms 
of the curvature, which can also be seen in the identified mode shape given in Fig. 3(b). 

 

   
(a) 1st mode at L/4.                                 (b) 2nd mode at L/4. 

   
(c) 1st mode at 2L/4.                                (d) 2nd mode at 2L/4. 

   
(e) 1st mode at 3L/4.                                 (f) 2nd mode at 3L/4. 

Fig. 4 Decomposed VBM time history at L/4, 2L/4 and 3L/4. 
 
Fig. 5 compares the time history of the measured vertical bending moment at three different locations with that of re-

constructed one by adding the 1st and 2nd mode shapes decomposed by the POD method. The two results compares quite well 
with slight deviations, which means that modes higher than the 2nd one are negligible. 
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(a) at L/4. 

 
(b) at 2L/4. 

 
(b) at 3L/4. 

Fig. 5 Comparison between the measured VBM time history and synthesized one at L/4, 2L/4 and 3L/4. 
 
The accuracy of POM can be validated by checking the relative contributions of the terms of Eq. (8), or the condition given  

as Eq. (9). Table 2 lists the absolute values of the three terms of 
1 T

i je e
N

 for each mode, i.e., 1, 2i = . As indicated by Eq.  

(9), the terms with i j≠  should be as minimal as possible, so the term with i j=  should prevail over the others. Table 2 
confirms that the two terms with i j≠  are negligibly small compared to the terms with i j= , and the value matches well 
with the eigenvalues of the coherence matrix. Table 2 also shows numerically the validity of POD even in cases when the mass 
distribution is unknown and the vibration is a forced one. 

 
Table 2 Error analysis of POD. 

 i  j  λ  1 T
i je e

N
 

1st mode 

1 1 
109.6320 10×  

109.4715 10×  

1 2 51.3299 10−×  

1 3 51.5447 10−− ×  

2nd mode 

2 1 
83.9404 10×  

51.3299 10−×  

2 2 103.8747 10×  

2 3 51.0285 10−×  
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Cross random decrement technique 

As defined in Eq. (11), the cross random decrement technique was used to extract the mode shapes of a vibrating hull. 
First of all, the measured vertical bending moment time history was filtered using a band pass filter, so that the signal of each 
vibration mode was decomposed and processed further. Fig. 6(a) shows the measured vertical bending moment time history at 
the L/4 location, and Fig. 6(b) shows the band pass filtered signal with a frequency band of 0.35 Hz<f<0.8 Hz, which 
corresponds to the first vibration mode. The marks in Fig. 6(b) indicate the triggering points of level crossing triggering, 
which are set to be the standard deviation of the entire signal. Based on these triggering points, a certain length of signal was 
selected and averaged, assuming that the process is stationary and ergodic. Fig. 6(c) shows the band pass filtered signal with 
its frequency band of 0.8 Hz<f<3 Hz, which corresponds to the second mode. The upper limit of the band pass filter for the 
second mode may be chosen arbitrarily because there are no further higher vibration modes other than the second mode in this 
particular case.  

 

  

  (a) VBM time history at L/4. 

 

  (b) Filtered VBM time history (0.35 Hz<f<0.8 Hz) and triggering points. 

 

(c) Filtered VBM time history (0.8 Hz<f<3.0 Hz) and triggering points. 
Fig. 6 Filtered and unfiltered VBM time history at L/4 with triggering points. 

 
Fig. 7 presents the evolution of CRDS with respect to the number of ensembles at three different locations along the ship 

length. As shown in Fig. 7, the CRDS converges and stabilizes quickly so that no further change can be observed under fur-
ther averaging. To check the convergence of the shape of the free decay signal, each ensemble chosen out of the original 
signal was normalized to the length of signal itself before taking the average. In case of a normalized signal of 2L/4 for the 
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second mode, as shown in Fig. 7(d), the peaks of the signal were fluctuating rather than smoothly decaying, which is the case 
for all others. This is because the absolute bending moment values remains near zero at 2L/4 for the second mode throughout 
the entire time span because of the deformation shape of this particular mode, which leads to relatively large errors for the 
decaying pattern. Fig. 8 shows the evolution of error with respect to the number of ensemble averages, where the error is de-
fined by Eq. (17). 

1

1

( ) ( )
( ) 100[%]

( )

n n
xy xy

n
xy

D D
Error n

D

τ τ

τ

−

−

−
= ×  (17) 

where n  means the number of samples used for averaging and ⋅  means vector norm. For all three locations, where the 
bending moment was measured, the error decayed quickly and became less than 5% when the number of samples reached 100. 
Again, the convergence pattern of the error at 2L/4 of the second mode was different from other cases due to the small absolute 
value of the bending moment. 

 

    

(a) at L/4 – 1st mode.                               (b) at L/4 – 2nd mode. 
 
    

(c) at 2L/4 – 1st mode.                              (d) at 2L/4 – 2nd mode. 
 
    

(e) at 3L/4 – 1st mode.                              (f) at 3L/4 – 2nd mode. 
Fig. 7 Convergence of VBM CRDS at L/4, 2L/4 and 3L/4 (1st mode). 
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(a) 1st mode.                                     (b) 2nd mode. 
Fig. 8 Error convergence of CRDS at L/4, 2L/4 and 3L/4. 

 
Fig. 9 shows the converged CRDS at three different locations, for both the first and second modes. For the first mode, the 

vertical bending moment oscillated in the same frequency without any phase lag between them as expected. In addition, the 
magnitudes of the vertical bending moment at L/4 and 3L/4 matched precisely, whereas that at 2L/4 was higher than the other 
two. In the case of the second mode, the vertical bending moments at L/4 and 3L/4 were out of phase with their magnitudes 
comparable to each other. The magnitude at 2L/4 remained near zero, implicitly demonstrating the deformation shape of the 
second mode.  

 
     

(a) 1st mode.                                      (b) 2nd mode. 
Fig. 9 Converged CRDS at L/4, 2L/4 and 3L/4. 

 
Fig. 10 presents the longitudinal distribution of the vertical bending moment for the arbitrarily chosen time instances. The 

solid red line is the envelope of the bending moment distribution along the ship length. The envelope was segmented because 
the bending moments were measured at three discrete location, as shown in Fig. 10. The bending moments at the two end lo-
cations were assumed to be all zeros.  

 

      
(a) 1st mode.                                    (b) 2nd mode. 

Fig. 10 Time evolution of the vertical bending moment along the ship length. 
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Fig. 11 shows the longitudinal distribution of the curvature, slope and deflection for both the first and second mode. The 
longitudinal distribution of curvature was identical to that of the bending moment due to the linear relationship between the 
two. The slope can be obtained by integrating the curvature following the geometrical relationship, and the deflection by 
integrating the slope. Simple trapezoidal rule was employed for this spatial integration. While integrating the curvature to 
obtain the slope, the points were connected to the line segment. The obtained deflection was corrected by rotating the ship so 
that the deflection at both ends of the ship becomes zero. For both the first and second modes, the shapes of the deflection were 
the normally observed ones. 

 

   

(a) Curvature – 1st mode.                           (b) Curvature – 2nd mode. 

   

(c) Slope – 1st mode.                              (d) Slope – 2nd mode. 

   

(e) Deflection – 1st mode.                          (f) Deflection – 2nd mode. 

   

(g) Corrected deflection – 1st mode.                  (h) Corrected deflection – 2nd mode. 
Fig. 11 Mode shapes of curvature, slope and deflection along the ship length. 

 
Fig. 12 compares the mode shapes of vertical bending moment, one obtained by the POD and the other one by the CRDT. 

For the first mode, the correspondence between the two results was almost perfect, but not for the second mode. The POD 
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slightly overestimated the bending moment at L/4 and underestimated it at 3L/4 compared to CRDT. As indicated before, the 
POM obtained by POD is an approximation of the eigenvector of the system so that one may conclude that the accuracy of 
CRDT is better than POD. The approximation nature of the POM to the mode shapes was attributed to the assumption of free 
vibration and uniform mass distribution. CRDT incorporates no artificial assumption; hence the accuracy is better than POD 
once the signal is filtered appropriately. On the other hand, filtering plays a key role in the accuracy of CRDT when the two 
vibration modes are closely related to the slight frequency gap, which may occur when the horizontal and torsional modes are 
present.  

 
    

 
 (a) 1st mode.                                      (b) 2nd mode. 

Fig. 12 VBM mode shape comparison between the POD and CRDT. 

CONCLUSIONS 

This paper addressed the prediction of mode shapes of a segmented hull model towed in a model basin using both the 
proper orthogonal decomposition and cross random decrement techniques. Based on the above discussions, the following con-
clusions were made. 

 
• A segmented hull model of a 400 K ore carrier was towed in the model basin under an irregular wave load and the time series 

of the vertical bending moment was measured at L/4, 2L/4 and 3L/4 locations. The hydroelastic response was predominant in 
terms of the springing and whipping with its vibration frequencies of approximately 0.47 Hz and 1.07 Hz. 
• The measure vertical bending moment time history was processed using the POD method and both the first and second 

vertical bending vibration modes were extracted. In addition, using the decomposed modal vectors, the measured vertical 
bending moment time history was decomposed into its first and second modes at three designated locations along the ship. 
• The summation of the two decomposed vertical bending moment time histories matched the measured total vertical bending  

  moment time history well. Moreover, error analysis of the POD method showed that the term, 
1 T

i je e
N

, almost vanished  

when i j≠ , which confirmed the validity of the POM as an asymptotic approximation of the modal vector. 

• The filtered vertical bending moment time history were processed using CRDT to obtain the free decay signal at three de-
signated locations. The averaged signal converged quickly as the number of samples increased for both the first and second 
modes. The errors quickly decayed down and became less than 5% when the number of samples reached 100 for all cases but 
at 2L/4 in the second mode. 

• The phase and magnitude difference of the free decay signal at the three designated locations revealed the mode shapes of the 
first and second vibrations. The mode shapes of the slope and deflection were also derived by numerically integrating the 
curvature and slope. The mode shapes of the deflection were in the form of well-known two and three-node vibrations. 

• The mode shapes of the vertical bending moment obtained from both the POD and CRDT coincided well with each other. 
Some deviations between the two results were observed for the second mode shape, which can be attributed to the approx-
imation nature of the POD, which assumes both a free vibration and uniform mass distribution. 
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