Browse > Article
http://dx.doi.org/10.4218/etrij.2021-0220

Comparison of wavelet-based decomposition and empirical mode decomposition of electrohysterogram signals for preterm birth classification  

Janjarasjitt, Suparerk (Department of Electrical and Electronic Engineering, Ubon Ratchathani University)
Publication Information
ETRI Journal / v.44, no.5, 2022 , pp. 826-836 More about this Journal
Abstract
Signal decomposition is a computational technique that dissects a signal into its constituent components, providing supplementary information. In this study, the capability of two common signal decomposition techniques, including wavelet-based and empirical mode decomposition, on preterm birth classification was investigated. Ten time-domain features were extracted from the constituent components of electrohysterogram (EHG) signals, including EHG subbands and EHG intrinsic mode functions, and employed for preterm birth classification. Preterm birth classification and anticipation are crucial tasks that can help reduce preterm birth complications. The computational results show that the preterm birth classification obtained using wavelet-based decomposition is superior. This, therefore, implies that EHG subbands decomposed through wavelet-based decomposition provide more applicable information for preterm birth classification. Furthermore, an accuracy of 0.9776 and a specificity of 0.9978, the best performance on preterm birth classification among state-of-the-art signal processing techniques, were obtained using the time-domain features of EHG subbands.
Keywords
classification; electrohysterogram signals; empirical mode decomposition; preterm birth; time-domain features; wavelet-based decomposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. He, Y. Bai, E. A. Garcia, and S. Li, ADASYN: adaptive synthetic sampling approach for imbalanced learning, (IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong), 2008, pp. 1322-1328.
2 G. FeleZorz, G. Kavsek, Z. Novak-Antolic, and F. Jager, A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and preterm delivery groups, Med. Biol. Eng. Comput. 46 (2008), 911-922.   DOI
3 A. Diab, M. Hassan, C. Marque, and B. Karlsson, Performance analysis of four nonlinearity analysis methods using a model with variable complexity and application to uterine EMG signals, Med. Eng. Phys. 36 (2014), 761-767.   DOI
4 N. E. Huang and S. S. Shen, Hilbert-Huang transform and its applications, 2nd ed., World Scientific, New Jersey, 2014.
5 N. E. Huang, M.-L. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, and K. L. Fan, A confidence limit for the empirical mode decomposition and Hilbert spectral analysis, Proc. Royal Soc. A 459 (2003), 2317-2345.   DOI
6 F. Jager, Term-Preterm EHG Database, 2012. https://www.physionet.org/content/tpehgdb/1.0.1/
7 U. R. Acharya, V. K. Sudarshan, S. Q. Rong, Z. Tan, C. M. Lim, J. E. Koh, S. Nayak, and S. Bhandary, Automated detection of premature delivery using empirical mode and wavelet packet decomposition techniques with uterine electromyogram signals, Comput. Bio. Med. 85 (2017), 33-42.   DOI
8 M. Lucovnik, W. L. Maner, L. R. Chambliss, R. Blumrick, J. Balducci, Z. Novak-Antolic, and R. E. Garfield, Noninvasive uterine electromyography for prediction of preterm delivery, Am. J. Obstetrics Gynecology 204 (2011), 228.e1-10.
9 A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals, Circulation 101 (2000), no. 23, e215-e220.
10 M. W. C. Vlemminx, K. M. J. Thijssen, G. I. Bajlekov, J. P. Dieleman, M. B. Van der Hout-Van der Jagt, and S. G. Oei, Electrohysterography for uterine monitoring during term labour compared to external tocodynamometry and intra-uterine pressure catheter, Eur. J. Obstetrics Gynecol. Reprod. Biol. 215 (2017), 197-205.   DOI
11 S. Janjarasjitt, Preterm-term birth classification using EMD-based time-domain features of single-channel electrohysterogram data, Phys. Eng. Sci. Med. 44 (2021), 1151-1159. https://doi.org/10.1007/s13246-021-01051-w   DOI
12 P. Fergus, P. Cheung, A. Hussain, D. Al-Jumeily, C. Dobbins, and S. Iram, Prediction of preterm deliveries from EHG signals using machine learning, PLoS ONE 8 (2013), e77154.   DOI
13 C. Hemthanon and S. Janjarasjitt, Examination of time-domain features of EHG data for preterm-term birth classification, J. Comput. 30 (2019), 41-54.
14 D. Alamedine, M. Khalil, and C. Marque, Comparison of different EHG feature selection methods for the detection of preterm labor, Computat. Math. Methods Med. 2013 (2013). https://doi.org/10.1155/2013/485684   DOI
15 M. Hassan, J. Terrien, C. Marque, and B. Karlsson, Comparison between approximate entropy, correntropy and time reversibility: application to uterine electromyogram signals, Med. Eng. Phys. 33 (2011), 980-986.   DOI
16 M. A. Oskoei and H. Hu, Support vector machine-based classification scheme for myoelectric control applied to upper limb, IEEE Trans. Biomed. Eng. 55 (2008), 1956-1965.   DOI
17 B. Moslem, M. Diab, M. Khalil, and C. Marque, Combining data fusion with multiresolution analysis for improving the classification accuracy of uterine EMG signals, EURASIP J. Adv. Signal Process. 2012 (2012), 167.   DOI
18 I. Daubechies, Ten lectures on wavelets, Society for industrial and applied mathematics, PA, USA, 1992. https://doi.org/10.1137/1.9781611970104   DOI
19 C. Hemthanon, and S. Janjarasjitt, Correlation between time-domain features of electrohysterogram data of pregnant women and gestational age. In: K. P. Lin, R. Magjarevic, and P. de Carvalho (eds.), Future trends in biomedical and health informatics and cybersecurity in medical devices. vol. 74, Springer, Cham, 2020.
20 K. S. Kim, H. H. Choi, C. S. Moon, and C. W. Mun, Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions, Current Appl. Phys. 11 (2011), 740-745.   DOI
21 D. Tkach, H. Huang, and T. A. Kuiken, Study of stability of time-domain features for electromyographic pattern recognition, J. NeuroEng. Rehabilitation 7 (2010), 21.   DOI
22 M. Zardoshti-Kermani, B. C. Wheeler, K. Badie, and R. M. Hashemi, EMG feature evaluation for movement control of upper extremity prostheses, IEEE Trans. Rehabilitation Eng. 3 (1995), 324-333.   DOI
23 I. Guyon and A. Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res. 3 (2003), 1157-1182.
24 A. J. Hussain, P. Fergus, H. Al-Askar, D. Al-Jumeily, and F. Jager, Dynamic neural network architecture inspired by the immune algorithm to predict preterm deliveries in pregnant women, Neurocomput. 151 (2015), 963-974.   DOI
25 L. Chen and Y. Hao, Feature extraction and classification of EHG between pregnancy and labour group using Hilbert-Huang transform and extreme learning machine, Computat. Math. Methods Med. 2017 (2017), https://doi.org/10.1155/2017/7949507   DOI
26 F. J. Ferri, P. Pudil, M. Hatef, and J. Kittler, Comparative study of techniques for large-scale feature selection, Mach. Intell. Pattern Recogn. 16 (1994), 403-413.
27 S. Mallat, A wavelet tour of signal processing, 1st ed., Academic Press, San Diego, 1998.
28 T. Fawcett, An introduction to ROC analysis, Pattern Recogn. Lett. 27 (2006), 861-874.   DOI
29 A. M. Kaleem and R. D. Kokate, Prediction of pre-term groups from EHG signals using optimal multi-kernel SVM, J. Ambient Intell. Humanized Comput. 12 (2021), 3689-3703.   DOI
30 Centers for Disease Control and Prevention, Preterm birth, 2020. https://www.cdc.gov/reproductivehealth/maternalinfanthealth/pretermbirth.htm
31 K. Thijssen, M. Vlemminx, M. Westerhuis, J. P. Dieleman, M. B. Van der Hout-Van der Jagt, and S. G. Oei, Uterine monitoring techniques from patients' and users' perspectives, AJP Reports 8 (2018), e184-e191.   DOI
32 F. Jager, S. Libensek, and K. Gersak, Characterization and automatic classification of preterm and term uterine records, PLoS ONE 13 (2018), e0202125.   DOI
33 C. Buhimschi, M. B. Boyle, and R. E. Garfield, Electrical activity of human uterus during pregnancy as recorded from the abdominal surface, Obstet. Gynecol. 90 (1997), 102-111.   DOI
34 I. Verdenik, M. Pajntar, and B. Leskosek, Uterine electrical activity as predictor of preterm birth in women with preterm contractions, Eur. J. Obstet. Gynecol. 95 (2001), 149-153.   DOI
35 H. de Lau, C. Rabotti, H. P. Oosterbaan, M. Mischi, and G. S. Oei, Study protocol: PoPE-prediction of preterm delivery by electrohysterography, BMC Pregnancy Childbirth 14 (2014), 192.   DOI
36 C. Rabotti and M. Mischi, Propagation of electrical activity in uterine muscle during pregnancy: a review, Acta Physiologica 213 (2015), 406-416.   DOI
37 W. L. Maner and R. E. Garfield, Identification of human term and preterm labor using artificial neural networks on uterine electromyography data, Ann. Biomed. Eng. 35 (2007), 465-473.   DOI
38 A. Smrdel and F. Jager, Separating sets of term and pre-term uterine EMG records, Physiol. Meas. 36 (2015), 341-355.   DOI
39 S. Janjarasjitt, Evaluation of performance on preterm birth classification using single wavelet-based features of EHG signals, (Biomedical Engineering International Conference, Hokkaido, Japan), 2017, pp. 1-4. https://doi.org/10.1109/BMEiCON.2017.8229118   DOI
40 H. Leman, C. Marque, and J. Gondry, Use of the electrohysterogram signal for characterization of contractions during pregnancy, IEEE Trans. Biomed. Eng. 46 (1999), 1222-1229.   DOI
41 C. K. Marque, J. Terrien, S. Rihana, and G. Germain, Preterm labour detection by use of a biophysical marker: the uterine electrical activity, BME Pregnancy Childbirth 7 (2007), S5.   DOI
42 J. Peng, D. Hao, L. Yang, M. Du, X. Song, H. Jiang, Y. Zhang, and D. Zheng, Evaluation of electrohysterogram measured from different gestational weeks for recognizing preterm delivery: a preliminary study using random forest, Biocybern. Biomed. Eng. 40 (2020), 352-362.   DOI
43 J. Mas-Cabo, Y. Ye-Lin, J. Garcia-Casado, A. Diaz-Martinez, A. Perales-Marin, R. Monfort-Ortiz, A. Roca-Prats, A. Lopez- Corral, and G. Prats-Boluda, Robust characterization of the uterine myoelectrical activity in different obstetric scenarios, Entropy 22 (2020), 743.   DOI
44 P. Fergus, I. Idowu, A. Hussain, and C. Dobbins, Advanced artificial neural network classification for detecting preterm births using EHG records, Neurocomput. 188 (2016), 42-49.   DOI
45 S. Janjarasjitt, Examination of single wavelet-based features of EHG signals for preterm birth classification, IAENG Int. J. Comput. Sci. 44 (2017), 212-218.
46 P. Pudil, J. Novovicova, and J. Kittler, Floating search methods in feature selection, Pattern Recogn. Lett. 15 (1994), 1119-1125.   DOI
47 S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell. 11 (1989), 674-693.   DOI
48 H. Blencowe, S. Cousens, D. Chou, M. Oestergaard, L. Say, A. -B. Moller, M. Kinney, and J. Lawn, Born too soon: the global epidemiology of 15 million preterm births, Reproductive Health 10 (2013), S2.   DOI
49 World Health Organization, Preterm birth, 2018. https://www.who.int/news-room/fact-sheets/detail/preterm-birth
50 P. Ren, S. Yao, J. Li, P. A. Valdes-Sosa, and K. M. Kendrick, Improved prediction of preterm delivery using empirical mode decomposition analysis of uterine electromyography signals, PLoS ONE 10 (2015), e0132116.   DOI
51 M. Vetterli and C. Herley, Wavelets and filter banks: theory and design, IEEE Trans. Signal Process. 40 (1992), 2207-2232.   DOI
52 Mayo Clinic, Premature birth, 2021. https://www.mayoclinic.org/diseases-conditions/premature-birth/symptoms-causes/syc-20376730
53 R. Fontugne, P. Borgnat, and P. Flandrin, Online empirical mode decomposition, (IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, LA, USA), Mar. 2017, pp. 4306-4310.
54 A. Grossman and J. Morlet, Decomposition of hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15 (1984), 723-736.   DOI
55 I. Daubechies, Orthonormal bases of compactly supported wavelets, Commun. Pure Appl. Math. 41 (1988), 909-996.   DOI
56 N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Royal Soc. A 454 (1998), 903-995.   DOI
57 WHO, WHO: recommended definitions, terminology and format for statistical tables related to the perinatal period and use of a new certificate for cause of perinatal deaths, Acta Obstetricia et Gynecologica Scandinavica 56 (1976), 247-253.
58 T. Y. Euliano, M. T. Nguyen, S. Darmanjian, S. P. McGorray, N. Euliano, A. Onkala, and A. R. Gregg, Monitoring uterine activity during labor: a comparison of 3 methods, Am. J. Obstetrics Gynecology 208 (2013), 66.e1-e6.
59 W. L. Maner, R. E. Garfield, H. Maul, G. Olson, and G. Saade, Predicting term and preterm delivery with transabdominal uterine electromyography, Obstetrics Gynecology 101 (2003), 1254-1260.
60 C. Marque, J. M. Duchene, S. Leclercq, G. S. Panczer, and J. Chaumont, Uterine EHG processing for obstetrical monitoring, IEEE Trans. Biomed. Eng. 333 (1986), 1182-1187.