• Title/Summary/Keyword: Missile guidance

Search Result 156, Processing Time 0.023 seconds

Modeling and Simulation of Target Existence Probability in Tactical Guidance Missile Seeker Image (영상탐색기 적용 전술유도무기 영상 내 표적존재확률 분석을 위한 M&S 설계 및 분석)

  • Seol, SangHwan
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.43-49
    • /
    • 2015
  • Maximum lock-on distance in tactical guidance missile using seeker image is estimated by seeker's FOV, resolution and performance of tracking algorithm. In case, a missile is launched beyond the maximum lock-on distance, the missile is guided by INS pure navigation until it enters the lock-on possible zone. However, the probability of a target's existence within seekers images decreases as flight time goes by. Therefore, it is crucial to determine the distance that satisfies a certain target existence probability (TEP) and the maximum lock-on distance in order for an operator to take over the navigation role between two distances. In this paper, simulation which can analyse TEP in tactical guided missile seeker image is designed.

Development of a Air-to-Air Missile Simulation Program for the Lethality Evaluation (치사율 평가를 위한 공대공 미사일 모의 발사 프로그램 개발)

  • Sung, Jae-Min;Kim, Byoung-Soo;Shin, Bo-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.288-293
    • /
    • 2010
  • This paper presents to calculate the lethality of missile for the simulation test program and to verify the simulation results. In order to calculate a reliable lethality we need may data and experiments of fuse and warhead, but in reality it is hard to perform a task. Therefore, this paper obtained from the reference paper to analyze the lethality data for the calculation of the lethality. We form the 6 DOF simulation model using the MATLAB/SIMULINK. And formed the autopilot algorithm using the vertical and horizontal acceleration feedback and PNG (Proportional Navigation Guidance) command be used to the guidance algorithm. Finally, we evaluate the results about three cases, front launch, side launch and rear launch to simulate the simulation program, and the target is designed to have a constant speed and direction.

A Pursuit-Evasion Game Between a Missile and an Aircraft (미사일과 항공기간의 추적.회피 게임)

  • Byun, Ji-Joon;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.946-948
    • /
    • 1996
  • In this paper, we consider a 2-dimensional pursuit-evasion game between a maneuvering target and a coasting missile using qualitative game theory. The optimal evasion algorithm of the target and the optimal guidance algorithm of the missile are determined and the barrier trajectories of this game are obtained through computer simulation. The optimal strategy of the missile and target is to turn toward the final line of sight direction using maximum input and maintain its direction. The capture set of the missile can be obtained by backward integration from the BUP.

  • PDF

Expected Miss Distance Concept and Its Applications to Aircraft Guidance Law for Arbitrary Flight Trajectory Tracking (기동오차 개념을 이용한 임의형상 비행궤적 추종을 위한 유도법칙에 관한 연구)

  • 민병문;노태수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.478-488
    • /
    • 2003
  • A guidance scheme that is suitable for controlling the aircraft flight path is proposed. The concept of miss distance which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the aircraft's trajectory-tracking guidance law. Guidance commands are given in terms of speed and flight path angles, but they perfectly reflect any position and velocity errors between real aircraft trajectory and reference one. The proposed guidance law is easily integrated into the existing flight control system. The new guidance law was extensively tested with various mission scenarios and the fully nonlinear 6-DOF aircraft model. Furthermore, the new guidance law was compared with previous guidance schemes in nonlinear simulation. Results from the numerical simulation show that the proposed guidance law yields better performance than previous ones.

New Composite Guidance Law with Look Angle Rate Constraint (지향각속도 제한을 고려한 복합 유도법칙)

  • Kim, Tae-Hun;Park, Bong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.4
    • /
    • pp.566-572
    • /
    • 2019
  • This paper proposes a new composite guidance law that can intercept moving targets and satisfy look angle rate constraint. In order to obtain the composite guidance law, we first develop a new look angle rate control guidance law which can maintain the maximum look angle rate limitation. And then, we propose the composite guidance scheme on the basis of the look angle rate control guidance and the proportional navigation guidance. To investigate the capturablity and characteristics of the proposed guidance, we also derive closed-form solutions and perform various numerical simulations. The proposed composite guidance only requires the line-of-sight rate, closing velocity, and missile's speed, thereby easily implementing in practical homing missiles.

Homing Guidance Law of Anti-Ship Missiles Using Flight Path Angle (비행 경로각을 이용한 대함 유도탄의 호밍 유도법칙)

  • Jin, Sheng-Hao;Yang, Bin;Hwang, Chung-Won;Park, Seung-Yub;Park, Seung-Je
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.596-603
    • /
    • 2010
  • This paper presents a homing guidance law of anti-ship missiles using flight path angle to achieve an impact time constraint as well as an impact angle constraint. the independent variable in the nonlinear engagement model is change d from the flight time to the heading angle of the missile. The proposed guidance law can home a missile to the target with zero miss distance as well as satisfying both of the impact angle and time constraints. The performance of the proposed guidance law is evaluated by the computer simulations.

A Study on Passive Homing Trajectory for Maximizing Target Information (표적 정보량을 최대화하는 피동 호밍궤적에 관한 고찰)

  • Ra, Won-Sang;Shin, Hyo-Sang;Jung, Bo-Young;Whang, Ick-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.172-181
    • /
    • 2019
  • This paper deals with the problem of generating the energy optimal trajectory which is intended to enhance the target tracking performance of a passive homing missile. Noticing that the essence of passive target tracking is the range estimation problem, the target information gathered by passive measurements can be readily analyzed by introducing the range estimator designed in line-of-sight(LOS) frame. Moreover, for the linear filter structure of the suggested range estimator, the cost function associated with the target information is clearly expressed as a function of the line-of-sight rate. Based on this idea, the optimal missile trajectory maximizing the target information is obtained by solving the saddle point problem for an indefinite quadratic cost which consists of the target information and the energy. It is shown that, different from the previous heuristic approaches, the guidance command producing the optimal passive homing trajectory is produced by the modified proportional navigation guidance law whose navigation constant is determined by the weighting coefficient for target information cost.

Guidance Filter Design Based on Strapdown Seeker and MEMS Sensors (스트랩다운 탐색기 및 MEMS 센서를 이용한 유도필터 설계)

  • Yun, Joong-Sup;Ryoo, Chang-Kyung;Song, Taek-Lyul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.1002-1009
    • /
    • 2009
  • Precision guidance filter design for a tactical missile with a strapdown seeker aided by low-cost strapdown sensors has been addressed in this paper. The low-cost strapdown sensors consist of an IMU with 3-axis accelerometers and gyroscopes, 3-axis magnetometers, and a barometer. Missile's position, velocity, attitude, and bias error of the barometer are considered as state variables. Since the state and measurement equations are highly nonlinear, we adopt UKF(Unscented Kalman Filter). The proposed guidance filter has a function of a navigation filter if target position error is not considered. In the case that the target position error is introduced, the proposed filter can effectively estimate the relative states of the missile to the true target. For specific engagement scenarios, we can observe that observability problems occur.

Proportional Navigation-Based Optimal Collision Avoidance for UAVs (비례항법을 이용한 무인 항공기의 최적 충돌 회피 기동)

  • 한수철;방효충
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1065-1070
    • /
    • 2004
  • Optimal collision avoidance algorithm for unmanned aerial vehicles based on proportional navigation guidance law is investigated this paper. Although proportional navigation guidance law is widely used in missile guidance problems, it can be used in collision avoidance problem by guiding the relative velocity vector to collision avoidance vector. The optimal navigation coefficient can be obtained if an obstacle if an obstacle moves at constant velocity vector. The stability of the proposed algorithm is also investigated. The stability can be obtained by choosing a proper navigation coefficient.