• Title/Summary/Keyword: Minimum variance control

Search Result 83, Processing Time 0.038 seconds

Modified Multivariate $T^2$-Chart based on Robust Estimation (로버스트 추정에 근거한 수정된 다변량 $T^2$- 관리도)

  • 성웅현;박동련
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • We consider the problem of detecting special variations in multivariate $T^2$-control chart when two or more multivariate outliers are present. Since a multivariate outlier may reflect slippage in mean, variance, or correlation, it can distort the sample mean vector and sample covariance matrix. Damaged sample mean vector and sample covariance matrix have difficulty in examining special variations clearly, An alternative to detection outliers or special variations is to use robust estimators of mean vector and covariance matrix that are less sensitive to extreme observations than are the standard estimators $\bar{x}$ and $\textbf{S}$. We applied popular minimum volume ellipsoid(MVE) and minimum covariance determinant(MCD) method to estimate mean vector and covariance matrix and compared its results with standard $T^2$-control chart using simulated multivariate data with outliers. We found that the modified $T^2$-control chart based on the above robust methods were more effective in detecting special variations clearly than the standard $T^2$-control chart.

  • PDF

Self-Tuning Control of Multivariable System (다변수 시스템의 자기동조제어)

  • Lee, D.C.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.69-78
    • /
    • 1999
  • In the single-input and single-output system, the parameter of plant is scalar polynomial, but in the multiple input and multiple output, it accompanies, being matrix polynomial, the consideration of observable controlability index or problems non-commutation in matrix polynomial as well as degree, and it is more complex to deal with. Therefore, it is thought that a full research on the single-input and single-output system is not sufficient. This paper proposes that problems of minimum variance self-tuning regulator by using numerical calculation example of multivariable system and pole assignment self-tuning regulator.

  • PDF

Self-tuning Control of DC Servo Motor Taking into Account of Load Variation (부하변동을 고려한 직류 서어보전동기의 자기동조제어에 관한 연구)

  • Lee, Yoon-Jong;Oh, Won-Seok;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.430-433
    • /
    • 1988
  • An adaptive control system for D.C servo drive is developed via minimum variance control theory. The problem of designing this controller under varying load conditions is discussed. A robust self tuning controller that can track a constant reference and reject constant load disturbance is developed. Simulation study shows that the controller has excellent adaptation, capability as well as transient recovery under load changes.

  • PDF

Adaptive Control for Discrete Process with Time Varying Delay (시변 지연시간을 갖는 이산형 프로세스의 적응제어)

  • 김영철;김국헌;정찬수;양흥석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.11
    • /
    • pp.503-510
    • /
    • 1986
  • A new algorithm based on the concept of prediction error minimization is suggested to estimate the time varying delay in discrete processes. In spite of the existence of the stochastic noise, this algorithm can estimate time varying delay accurately. Computation time of this algorithm is far less than that of the previous extended parameter methods. With the use of this algorithm, generalized minimum variance control shows good control behavior in simulations.

  • PDF

Modelling of a pH titration process and design of a self-tuning pH controller (pH 적정공정의 모델링 및 자기동조 제어기 설계)

  • 김우태;이혁희;최태호;이지태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.476-481
    • /
    • 1988
  • In this paper a pH process of a weak acid with a strong base is modeled into a bilinear form, and a self-tuning pH control algorithm which is robust against initial values of solution and disturbances is presented. The control algorithm employs the recursive least square method for the parameter estimation and the generalised minimum variance criterion as the objective function. The computer simulation shows that the tracking of desired pH values is obtained in satisfactory manner regardless of the initial values chosen for the process.

  • PDF

Design of a Self-tuning Controller with a PID Structure Using Neural Network (신경회로망을 이용한 PID구조를 갖는 자기동조제어기의 설계)

  • Cho, Won-Chul;Jeong, In-Gab;Shim, Tae-Eun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.1-8
    • /
    • 2002
  • This paper presents a generalized minimum-variance self-tuning controller with a PID structure using neural network which adapts to the changing parameters of the nonlinear system with nonminimum phase behavior and time delays. The neural network is used to estimate the controller parameters, and the control output is obtained through estimated controller parameter. In order to demonstrate the effectiveness of the proposed algorithm, the computer simulation is done to adapt the nonlinear nonminimum phase system with time delays and changed system parameter after a constant time. The proposed method compared with direct adaptive controller using neural network.

Blind adaptive receiver for uplink multiuser massive MIMO systems

  • Shin, Joonwoo;Seo, Bangwon
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.26-35
    • /
    • 2020
  • Herein, we consider uplink multiuser massive multiple-input multiple-output systems when multiple users transmit information symbols to a base station (BS) by applying simple space-time block coding (STBC). At the BS receiver, two detection filters for each user are used to detect the STBC information symbols. One of these filters is for odd-indexed symbols and the other for even-indexed symbols. Using constrained output variance metric minimization, we first derive a special relation between the closed-form optimal solutions for the two detection filters. Then, using the derived special relation, we propose a new blind adaptive algorithm for implementing the minimum output variance-based optimal filters. In the proposed adaptive algorithm, filter weight vectors are updated only in the region satisfying the special relation. Through a theoretical analysis of the convergence speed and a computer simulation, we demonstrate that the proposed scheme exhibits faster convergence speed and lower steady-state bit error rate than the conventional scheme.

Stereo Matching Method using Directional Feature Vector (방향성 특징벡터를 이용한 스테레오 정합 기법)

  • Moon, Chang-Gi;Jeon, Jong-Hyun;Ye, Chul-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.52-57
    • /
    • 2007
  • In this paper we proposed multi-directional matching windows combined by multi-dimensional feature vector matching, which uses not only intensity values but also multiple feature values, such as variance, first and second derivative of pixels. Multi-dimensional feature vector matching has the advantage of compensating the drawbacks of area-based stereo matching using one feature value, such as intensity. We define matching cost of a pixel by the minimum value among eight multi-dimensional feature vector distances of the pixels expanded in eight directions having the interval of 45 degrees. As best stereo matches, we determine the two points with the minimum matching cost within the disparity range. In the experiment we used aerial imagery and IKONOS satellite imagery and obtained more accurate matching results than that of conventional matching method.

An Optimal Fixed-lag FIR Smoother for Discrete Time-varying State Space Models (이산 시변 상태공간 모델을 위한 최적 고정 시간 지연 FIR 평활기)

  • Kwon, Bo-Kyu;Han, Soohee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • In this paper, we propose an optimal fixed-lag FIR (Finite-Impulse-Response) smoother for a class of discrete time-varying state-space signal models. The proposed fixed-lag FIR smoother is linear with respect to inputs and outputs on the recent finite horizon and estimates the delayed state so that the variance of the estimation error is minimized with the unbiased constraint. Since the proposed smoother is derived with system inputs, it can be adapted to feedback control system. Additionally, the proposed smoother can give more general solution than the optimal FIR filter, because it reduced to the optimal FIR filter by setting the fixed-lag size as zero. A numerical example is presented to illustrate the performance of the proposed smoother by comparing with an optimal FIR filter and a conventional fixed-lag Kalman smoother.