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1  |   INTRODUCTION

The main requirements for fifth‐generation (5G) cellular 
communications include high‐peak data rate, superior spec-
tral efficiency, ultra‐low latency, and large device density 
[1,2]. Among these, spectral efficiency is particularly im-
portant because most of the available frequency bands have 
already been allocated to existing wireless communication 
systems. Hence, multiuser massive multiple‐input multiple‐
output (MIMO) is considered a key technology for satisfying 
the spectral efficiency requirement of 5G communication 
networks [3‒9]. In multiuser massive MIMO systems, many 
antennas (generally over one hundred) are deployed at a 
base station (BS), and many users are scheduled to use the 
same time‐frequency resources for simultaneous multiuser 
communications. With these many antennas at the BS, most 
multiuser interference can be eliminated by the use of very 

high‐dimensional precoding and beamforming technologies 
at the transmitter and receiver, respectively.

Meanwhile, space‐time block coding (STBC) schemes 
have been developed to provide reliable transmission for 
MIMO systems [10‒17], particularly when channel parame-
ters vary rapidly owing to the movement of mobile stations. 
The simple STBC scheme proposed by Alamouti [10] has 
attracted substantial attention because it can achieve full‐rate 
and full‐diversity gain by a simple combining operation on 
the receiver side. Therefore, Alamouti’s simple STBC tech-
nology has been widely utilized in 3GPP long‐term evolution 
(LTE)‐advanced systems.

In uplink multiuser massive STBC‐MIMO systems, mul-
tiple users equipped with multiple transmitting antennas 
transmit their data to the BS using the same time‐frequency 
resources by applying STBC technology. When the number 
of receiving antennas at the BS is very large, it is impractical 
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to implement detection filters by batch‐processing algorithms 
because such algorithms generally require inverse matrix 
calculation of very large matrices. Therefore, in multiuser 
massive MIMO systems with a very large number of anten-
nas, it is more reasonable to implement detection filters with 
adaptive algorithms to reduce the computation complexity 
substantially.

Adaptive algorithms can be classified into two main cate-
gories: non‐blind adaptive algorithms and blind adaptive al-
gorithms [18‒33]. Non‐blind adaptive algorithms require the 
transmission of a pilot training sequence. Moreover, the op-
timal detection filter taps are identified by updating the filter 
taps with the aid of the pilot training sequence. Meanwhile, 
in blind adaptive algorithms, the filter taps are updated with-
out the aid of the pilot training sequence. Therefore, blind 
adaptive algorithms are more efficient in terms of spectral 
efficiency because they do not require transmission of the re-
dundant pilot training sequence.

To derive a blind adaptive algorithm for STBC‐MIMO 
systems, minimization of the filter output variance was con-
sidered in [20,24,27]. If this method is directly applied to 
the design of receivers of uplink multiuser massive STBC‐
MIMO communication, two filter weight vectors will be up-
dated independently. Here, one of the filter weight vectors 
is used for detecting odd‐indexed symbols and the other for 
detecting even‐indexed symbols. Because the number of fil-
ter taps is equal to the number of receiving antennas at the BS 
and the convergence speed of adaptive algorithms is propor-
tional to the number of filter taps [34,35], the conventional 
adaptive receiver for uplink massive MIMO systems obtained 
from the direct application of [20,24,27] exhibits a very low 
convergence speed.

In this paper, we propose a blind adaptive receiver with 
high convergence speed for uplink multiuser massive STBC‐
MIMO systems when multiple users transmit information 
symbols applying Alamouti’s simple STBC technology. By 
considering the minimization of the constrained output vari-
ance in the design of the detection filters, we first derive a spe-
cial relation between the two filter weight vectors. Then, we 
propose a new blind adaptive receiver using the derived spe-
cial relation. In the proposed scheme, tap weight vectors of the 
detection filters are updated only in the region satisfying the 
special relation in order to increase the convergence speed of 
the blind adaptive receiver. Through a theoretical analysis of 
the convergence speed and a computer simulation, we demon-
strate that the proposed scheme exhibits higher convergence 
speed than the conventional blind adaptive receiver does for 
identical signal‐to‐interference‐plus‐noise ratio (SINR). We 
also demonstrate that the proposed scheme exhibits lower 
steady‐state bit error rate (BER) performance than the con-
ventional scheme does for identical convergence speed.

The rest of the paper is organized as follows: Section 2 de-
scribes the system model. The conventional blind adaptive 

receiver is explained in Section 3. The proposed blind adaptive 
receiver with high convergence speed is presented in Section 4, 
and the theoretical analysis of its convergence speed performance 
is described in Section 5. The simulation results are enumerated 
in Section 6, and conclusions are presented in Section 7.

2  |   SYSTEM MODEL

Figure 1 shows a system model of the type of uplink multi-
user massive MIMO communications that we consider in this 
paper. In the Figure 1, K users transmit data to a BS using 
the same time‐frequency resources by means of Alamouti’s 
simple STBC scheme. For simplicity, we assume that the BS 
is equipped with a large number, N, of receiving antennas 
and that each user is equipped with two transmit antennas. 
However, the extension to more than two transmit antennas 
at each user is straightforward when using a transmit precod-
ing scheme for each user.

For Alamouti’s simple STBC processing, at the odd‐in-
dexed symbol time (2n−1), user k sends two information 
symbols sk(2n−1) and sk(2n) using transmit antennas 1 and 
2, respectively. Then, the received signal vector r(2n−1) 
of length N at the BS during the odd‐indexed symbol time 
(2n−1) is expressed as follows:

where hk,m, m =1, 2, denotes the channel vector of length 
N from the transmit antenna m of user k to the receiv-
ing antennas of the BS. Moreover, the vector v(2n−1) is 
a complex additive white Gaussian noise (AWGN) vec-
tor with mean 0N×1 and covariance matrix �2

v
IN. Here, 

0N×1 is a zero vector of length N , and IN is an identity 
matrix of size N×N . The information symbols, sk(n), 
satisfy E[sk(n)s∗

k�
(n�)]=�2

s
�(n−n�)�(k−k�). Here, �(n) is 

the Kronecker delta function, and �2
s
=1 is assumed for 

simplicity.

(1)r(2n−1)=

K∑
k=1

{
hk,1sk(2n−1)+hk,2sk(2n)

}
+v(2n−1),

F I G U R E  1   System model for uplink multiuser massive MIMO 
communications
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Meanwhile, at the odd‐indexed symbol time 2n, user 
k sends information symbols −s∗

k
(2n) and s∗

k
(2n−1) using 

transmit antennas 1 and 2, respectively. Here, ( ⋅ )∗ represents 
complex conjugate operation. Then, the received signal vec-
tor r(2n) of length N at the BS during the even‐indexed sym-
bol time 2n is expressed as follows:

where v(2n) is a complex AWGN vector.
If we define the extended received signal vector of length 

2N by y(n)= [rT(2n−1) rH(2n)]T (where ( ⋅ )T and ( ⋅ )H rep-
resent transpose and Hermitian transpose operations, respec-
tively), y(n) can be expressed as follows: 

where gk,1, gk,2, and z(n) are expressed as gk,1 = [hT
k,1

hH
k,2

]T,

gk,2 = [hT
k,2

−hH

k,1
]T, and z(n)= [vT(2n−1) vH(2n)]T, 

respectively.
Here, we consider the detection of the information sym-

bols of user 1: s1(2n−1) and s1(2n). We assume that the de-
tection filters w1 and w2 of length 2N each are used to detect 
the odd‐indexed symbols s1(2n−1) and even‐indexed sym-
bols s1(2n), respectively. Then, the estimate of s1(2n−1) is 
obtained from the output signal of the detection filter w1 and 
is expressed as follows: 

Similarly, the estimate of s1(2n) is obtained from the out-
put signal of w2 and is expressed as follows: 

3  |   MOV‐BASED OPTIMAL 
RECEIVER AND CONVENTIONAL 
BLIND ADAPTIVE ALGORITHM

3.1  |  MOV‐based optimal receiver
We define the output variances for w1 and w2 as 
J1 =E[|wH

1
y(n)|2] and J2 =E[|wH

2
y(n)|2], respectively. Then, 

J1 and J2 are expressed as follows: 

respectively. Here, the matrix Ry of size 2N×2N is a covari-
ance matrix of y(n) and is expressed as follows: 

In the expressions of the output variances J1 and J2, the 
components |wH

1
g1,1|2 and |wH

2
g1,2|2 are the output variances 

of the desired signals, whereas the other components repre-
sent those of interference plus AWGN. Therefore, the detec-
tion filters should be designed to eliminate the interference 
and AWGN components in J1 and J2.

The optimization problem for determining w1 and w2 
based on the minimization of a constrained output variance 
(MOV) can be expressed as follows:

where J(w1, w2)=wH
1

Ryw1+wH
2

Ryw2 is the total output 
variance.

The Lagrange function for the optimization problem is ex-
pressed as follows:

where �1 and �2 are Lagrange multipliers.
The partial derivatives of L(w1, w2, �1, �2) with respect to 

each of w1, w2, �1, and �2 are expressed as follows:

From (11) and (12), the MOV‐based optimal solution is 
expressed as follows:

Because the size of Ry is 2N×2N and N is a very large num-
ber for massive MIMO systems, it is impractical to calculate 
the inverse matrix of Ry by batch processing. Therefore, it is 

(2)r(2n)=

K∑
k=1

{
hk,2s∗

k
(2n−1)−hk,1s∗

k
(2n)

}
+v(2n),

(3)
y(n) = [rT(2n−1) r

H(2n)]T

=
K∑

k=1

�
g

k,1s
k
(2n−1)+g

k,2s
k
(2n)

�
+z(n),

(4)

ŝ1(2n−1) =wH
1

y(n)

=wH
1

g1,1s1(2n−1)+wH
1

g1,2s1(2n)

+
K∑

k=2

�
wH

1
gk,1sk(2n−1)+wH

1
gk,2sk(2n)

�
+wH

1
z(n).

(5)

ŝ1(2n) =wH
2

y(n)

=wH
2

g1,2s1(2n)+wH
2

g1,1s1(2n−1)

+
K∑

k=2

�
wH

2
gk,1sk(2n−1)+wH

2
gk,2sk(2n)

�
+ wH

2
z(n).

(6)
J1 =w

H

1
Ryw1 = |wH

1
g1,1|2+ |wH

1
g1,2|2

+

K∑
k=2

{|wH

1
gk,1|2+ |wH

1
gk,2|2

}
+�2

v
w

H

1
w1,

(7)

J2 =w
H

2
Ryw2 = |wH

2
g1,2|2+ |wH

2
g1,1|2

+

K∑
k=2

{|wH

2
gk,1|2+ |wH

2
gk,2|2

}
+ �2

v
w

H

2
w2,

(8)Ry =E[y(n)yH(n)]=

K∑
k=1

{
gk,1gH

k,1
+gk,2gH

k,2

}
+�2

v
I2N .

(9)
{w1,opt, w2,opt}= arg min

w1,w2

J(w1, w2)

s.t. wH
1

g1,1 =1, wH
2

g1,2 =1,

(10)
L(w1,w2,�1,�2)

=wH
1

Ryw1+wH
2

Ryw2+�1(wH
1

g1,1−1)+�2(wH
2

g1,2−1),

(11)
�L

�w∗
m

=Rywm+�mg1,m =0, m=1, 2,

(12)
�L

��m

=wH
m

g1,m−1=0, m=1, 2.

(13)wm,opt =
1

gH
1,m

R−1
y

g1,m

R−1
y

g1,m, m=1, 2.
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more reasonable to implement the detection filters for massive 
MIMO systems using adaptive algorithms because adaptive 
algorithms do not require the calculation of inverse matrices.

3.2  |  Conventional blind adaptive receiver
To remove the constraints in (9) and then obtain an uncon-
strained optimization problem, we rewrite w1 and w2 in its 
canonical forms (that is, wm = ḡ1,m+Qmxm, m=1, 2).  
Here, ḡ1,m =g1,m∕∥g1,m ∥2 is a normalized channel vector, 
Qm, m=1, 2, is the 2N× (2N−1) matrix whose columns 
form an orthonormal basis of the null space of ḡ1,1 (that is, 
QH

m
ḡ1,m =0 and QH

m
Qm = I2N−1, m=1, 2), and the vector xm of 

length (2N−1) is an adjustable component. Then, the con-
strained optimization problem (9) can be reexpressed without 
the constraints as follows:

If we define

the partial derivatives of J(x1, x2) with respect to x1 and x2 are 
expressed as [36]

To develop a blind adaptive algorithm for the optimization 
problem (14), the covariance matrix Ry is replaced with its one‐
sample mean (that is, Ry ≈y(n)y(n)H). Therefore, a conventional 
MOV‐based blind adaptive algorithm is expressed as follows:

where �c is the step‐size of the conventional scheme. Finally, 
the update equation for the detection filter is expressed as

Because the tap length of each filter in the update (17) of the 
conventional adaptive scheme is 2N and the convergence speed 
of adaptive algorithms is proportional to the filter tap length 
[34,35], the convergence speed of the conventional scheme is 
very low when the number of receiving antennas N is very large.

4  |   PROPOSED MOV‐BASED 
BLIND ADAPTIVE RECEIVER

To improve the convergence speed of the conventional 
scheme, we propose a new blind adaptive receiver with 

high convergence speed. First, we derive a special rela-
tion between the two MOV‐based optimal detection filters 
expressed in (13). Then, using the special relation, we present 
the proposed blind adaptive receiver.

4.1  |  Relation between two MOV‐based 
optimal detection filters
Because y(n)= [rT(2n−1) rH(2n)]T, the covariance matrix 
of y(n) can be expressed as its partitioned matrices as follows:

Moreover, by using (1) and (2), the covariance matrix can 
be reexpressed as follows:

By comparing (19) and (20), we observe the following 
relation among the submatrices of Ry:

To derive a relation between w1,opt and w2,opt, we define 
w

m
, m=1, 2, by its subvectors (that is, wm = [wT

m,1
wT

m,2
]T)  

and introduce a vector v1 = [vT
1,1

vT
1,2

]T of length 2N and 
whose subvectors v1,1 and v1,2 are each of length N.

Proposition 1  Let the subvectors v1,1 and v1,2 be

Then, the following relation can be obtained:

Proof.   Because Ry is a Hermitian matrix and wH
2

Ryw2 is 
scalar, we obtain

Now, using (21) and (22), wH
2

Ryw2 can be reexpressed as 
follows:

(14)
{x1,opt, x2,opt}= arg min

x1,x2

{(ḡ1,1+Q1x1)H
R

y
(ḡ1,1+Q1x1)

+ (ḡ1,2+Q2x2)H
R

y
(ḡ1,2+Q2x2)}.

(15)
J(x1, x2)= (ḡ1,1+Q1x1)H

R
y
(ḡ1,1+Q1x1)

+(ḡ1,2+Q2x2)H
R

y
(ḡ1,2+Q2x2),

(16)

𝜕

𝜕x∗
m

J(x1, x2)=Q
H

m
R

y
(ḡ1,m+Q

m
x

m
)

=Q
H

m
R

y
w

m
, m=1, 2.

(17)x
m

(n+1)=x
m

(n)−�cQ
H

m
y(n){y(n)H

w
m

(n)}, m=1, 2,

(18)wm(n+1)= ḡ1,m+xm(n+1), m=1, 2.

(19)

R
y
=E[y(n)y(n)H]

=

[
E[r(2n−1)rH(2n−1)] E[r(2n−1)rT(2n)]

E[r∗(2n)rH(2n−1)] E[r∗(2n)rT(2n)]

]

=

[
R1,1 R1,2

R2,1 R2,2

]
.

(20)

Ry =

⎡⎢⎢⎢⎢⎣

K∑
k=1

{hk,1hH
k,1

+hk,2hH
k,2
}+�2

v
IN

K∑
k=1

{hk,1hT
k,2

−hk,2hT
k,1
}

K∑
k=1

{h∗
k,2

hH
k,1

−h∗
k,1

hH
k,2
}

K∑
k=1

{h∗
k,2

hT
k,2

+h∗
k,1

hT
k,1
}+�2

v
IN

⎤⎥⎥⎥⎥⎦
.

(21)R1,1 =R∗
2,2

, R1,2 =−R∗
2,1

.

(22)v1,1 =−w∗
2,2

, v1,2 =w∗
2,1

.

(23)
wH

2
Ryw2 =vH

1
Ryv1.

(24)

wH
2

Ryw2 = (wH
2

Ryw2)∗ =wT
2
R∗

y
w∗

2

=
[

wT
2,1

wT
2,2

][ R∗
1,1

R∗
1,2

R∗
2,1

R∗
2,2

][
w∗

2,1

w∗
2,2

]
.
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Moreover, the constraint on w2 in (9), wH
2

g1,2 =1, is 
equivalent to (wH

2
g1,2)∗ =1. Furthermore, by using (22), 

(wH
2

g1,2)∗ =1 can be reexpressed as follows:

Therefore, the constraint wH
2

g1,2 =1 can be reexpressed as 
vH

1
g1,1 =1. Now, by using v1 rather than w2, the optimization 

problem (9) can be reexpressed as follows:

By comparing (9) and (27), we observe that w1,opt =v1,opt.  
From (22), we can obtain the following special relation be-
tween the two MOV optimal detection filters:

4.2  |  Proposed blind adaptive receiver
Because the optimal detection filters satisfy the special rela-
tion (28), it is reasonable to consider that the convergence 
speed of a blind adaptive algorithm will be improved if adap-
tive detection filters are updated only in the region satisfying 
the relation in (28).

Therefore, by substituting w2,1 and w2,2 with w∗
1,2

 and −w∗
1,1

,  
respectively, w2 can be expressed as follows:

where D=

[
0 IN

−IN 0

]
.

Using (29) rather than w2, the total output variance in (9) can 
be modified as a function of w1 only and expressed as follows:

Furthermore, the constraint wH
2

g1,2 =1 in (9) is equiva-
lent to (wH

2
g1,2)∗ =1. If we use (29) rather than w2 and apply 

certain linear manipulation, it is convenient to demonstrate 
that the constraint (wH

2
g1,2)∗ =1 is equivalent to wH

1
g1,1 =1.

Then, the original constrained output variance minimiza-
tion problem in (9) can be modified as follows:

To eliminate the constraint in (31) and then to obtain an 
unconstrained optimization problem, we reexpress w1 in its 
canonical form (that is, w1 = ḡ1,1+Q1x1).

Now, the modified output variance can be reexpressed as 
follows:

The partial derivative of JM(x1) with respect to x1 is ex-
pressed as [36]

The optimal weight vectors x1,opt and w1,opt are obtained 
by setting �JM∕�x∗

1
=0. Hence, we obtain

To derive the proposed blind adaptive algorithm, the co-
variance matrix Ry is approximated by its one‐sample mean 
Ry ≈y(n)yH(n). Then, the blind adaptive algorithm for x1 is 
expressed as follows:

where �p is the step‐size of the proposed scheme.
Now, the detection filter w1(n+1) is expressed as follows:

In addition, the submatrices of w2(n+1) are directly obtained 
from w1(n+1) without applying another independent adap-
tive algorithm for w2(n+1); that is, w2,1(n+1)=w∗

1,2
(n+1), 

and w2,2(n+1)=−w∗
1,1

(n+1).

5  |   PERFORMANCE ANALYSIS

In this section, we theoretically analyze the convergence 
speed of the proposed blind adaptive algorithm by following 
an approach similar to the one in [34].

Let the weight‐error vector in the blind adaptation of x1(n) 
be defined as

where the optimal weight vector x1,opt is expressed as (34).

(25)

w
H

2
R

y
w2 =

[
v

H
1,2

−v
H
1,1

][
R2,2 −R2,1

−R1,2 R1,1

][
v1,2

−v1,2

]

=v
H

1,2
R2,2v1,2+v

H

1,1
R1,2v1,2+v

H

1,2
R2,1v1,1

+ v
H

1,1
R1,1v1,1 =v

H

1
R

y
v1.

(26)

(wH
2

g1,2)∗ =
[

wT
2,1

wT
2,2

][ h∗
1,2

−h1,1

]

=
[

vH
1,2

−vH
1,1

][ h∗
1,2

−h1,1

]

=vH
1,2

h∗
1,2

+vH
1,1

h1,1 =vH
1

g1,1.

(27)
{w1,opt, v1,opt}= arg min

w1, v1

w
H
1

R
y
w1+v

H
1

R
y
v1

s.t. w
H
1

g1,1 =1, v
H
1

g1,1 =1.

(28)w1,1,opt =−w∗
2,2,opt

, w1,2,opt =w∗
2,1,opt

.

(29)w2 =

[
w2,1

w2,2

]
=

[
w

∗
1,2

−w
∗
1,1

]
=

[
0 I

N

−I
N

0

][
w

∗
1,1

w
∗
1,2

]
=Dw

∗
1
,

(30)
JM(w1)=wH

1
Ryw1+wH

1
DTRyDw1

=wH
1

(Ry+DTRyD)w1.

(31)w1,opt = arg min
w1

JM(w1) s.t. wH
1

g1,1 =1.

(32)JM(x1)= (ḡ1,1+Q1x1)H(Ry+DTRyD)(ḡ1,1+Q1x1).

(33)
𝜕JM

𝜕x∗
1

=QH
1

(Ry+DTRyD)(ḡ1,1+Q1x1).

(34)
Q

H
1

(R
y
+ D

T
R

y
D)(ḡ1,1+Q1x1,opt)

=Q
H
1

(R
y
+D

T
R

y
D)w1,opt =0.

(35)
x1(n+1)=x1(n)−𝜇pQH

1
{y(n)yH(n)

+DTy(n)yH(n)D}{ḡ1,1+Q1x1(n)},

(36)w1(n+1)= ḡ1,1+Q1x1(n+1).

(37)�1(n)=x1(n)−x1,opt,

◾
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By subtracting x1,opt from each side of (35) and through 
certain linear manipulation, we can obtain

If we apply the expectation operation to each side of (38) 
and use the relation for w1,opt expressed as (34), we obtain

Let the l‐th eigenvalue of any L×L matrix A be denoted 
by �l(A), and let the eigenvalues be arranged in increasing 
order such as �1(A)≤�2(A)≤⋯≤�L(A).

Now, following a procedure for the convergence speed 
analysis of the adaptive receiver similar to that in [34], we 
observe from (39) that the convergence speed of the pro-
posed adaptive scheme depends on the eigenvalue spread 
χ of the (2N−1)× (2N−1) matrix QH

1
(Ry+DTRyD)Q1 de-

fined by

Moreover, using an approach for the conventional scheme 
similar to that in (17), we observe that the convergence speed 
of the conventional scheme depends on the eigenvalue spread 
χ of the matrix QH

1
RyQ1 defined by

To compare the convergence speeds of the proposed 
and conventional adaptive schemes, we need to compare 
(40) and (41). To do that, we first analyze the properties of 
the eigenvalues of Ry and DTRyD, and then QH

1
RyQ1 and 

QH
1

[Ry+DTRyD]Q1.

Proposition 2  All the eigenvalues of Ry are repeated eigen-
values expressed as follows:

Proof.   Any eigenvalue �l(Ry) and its corresponding eigen-
vector c= [cT

1
c

T
2
]T for Ry are obtained by solving the 

following simultaneous equations:

Using the relation among the submatrices of Ry given by 
(21), the (43) can be reexpressed as follows:

For a specified eigenvalue �l(Ry), it is conveniently demon-
strated that c̄= [−c

H
2

c
H
1

]T is also the solution of (44). 
Because c and c̄ are orthogonal (that is, cHc̄=0), c̄ is an-
other eigenvector corresponding to the eigenvalue �l(Ry).  
Therefore, any eigenvalue �l(Ry) is a repeated eigenvalue.

Moreover, applying a similar approach for DTRyD and 
using the relation of the submatrices of Ry, we can conve-
niently demonstrate that all the eigenvalues of Ry+DTRyD 
are repeated eigenvalues. That is,

Proposition 3  The eigenvalues of DTRyD are identical to 
those of Ry. That is,

Proof.   Let �l(Ry) and c= [cT
1

c
T
2
]T be the eigenvalue 

and its corresponding eigenvector for Ry satisfying 
Ryc=�l(Ry) c. Because Ry is a Hermitian matrix, 
�l(Ry) is a real number and therefore, can be reex-
pressed as R∗

y
c∗ =�l(Ry) c∗. Using the submatrices of 

Ry, it can be reexpressed as follows:

To obtain the relation of the eigenvalues and eigenvectors 
between DTRyD and Ry, we calculate

Using the relation between the submatrices of Ry given in 
(21) and referring to (47), we obtain

Therefore, �l(Ry) is also an eigenvalue of DTRyD.
We introduce the following two theorems to aid the con-

vergence speed analysis of the proposed scheme:

Hermann Weyl Theorem  [37]   Let A and B be L×L 
Hermitian matrices, and let the eigenvalues of A, B, 
and A + B be �l(A), �l(B), and �l(A+B), respectively. 
Here, the eigenvalues of each matrix are arranged in 
increasing order. Then, we obtain

(38)
�1(n+1)={I2N−1−�pQH

1
[y(n)yH(n)+DTy(n)yH(n)D]Q1}�1(n)

−�pQH
1
{y(n)yH(n)+DTy(n)yH(n)D}w1,opt.

(39)E[�1(n+1)]={I2N−1−�pQH
1

(Ry+DTRyD)Q1}E[�1(n)].

(40)�(QH
1

[Ry+DTRyD]Q1)=
�2N−1(Q

H
1

[Ry+DTRyD]Q1)

�1(Q
H
1

[Ry+DTRyD]Q1)
.

(41)�(QH
1

RyQ1)=
�2N−1(Q

H
1

RyQ1)

�1(Q
H
1

RyQ1)
.

(42)�1(Ry)=�2(Ry)≤�3(Ry)=�4(Ry)≤⋯≤�2N−1(Ry)=�2N(Ry).

(43)

Ryc=�l(Ry)c⇒

[
R11 R12

R21 R22

][
c1

c2

]

=�l(Ry)

[
c1

c2

]
.

(44)
R11c1+R12c2 =�l(Ry)c1

R11c∗
2
+R12

(
−c∗

1

)
=�l(Ry)c∗

2
.

(45)�2l−1(Ry+DTRyD)=�2l(Ry+DTRyD), l=1, … , N.

(46)�l(D
TRyD)=�l(Ry), l=1, 2, … , 2N.

(47)
[

R∗
11

c∗
1
+R∗

12
c∗

2

R∗
21

c∗
1
+R∗

22
c∗

2

]
=�l(Ry)

[
c∗

1

c∗
2

]
.

(48)

(D
T
RyD)c∗ −�l(Ry)c∗

=

[
R22c

∗
1
−R21c

∗
2

−R12c
∗
1
+R11c

∗
2

]
−�l(Ry)

[
c
∗
1

c
∗
2

]
.

(49)

(D
T
RyD)c∗ −�l(Ry)c∗

=

[
R

∗
11

c
∗
1
+R

∗
12

c
∗
2

R
∗
21

c
∗
1
+R

∗
22

c
∗
2

]
−�l(Ry)

[
c
∗
1

c
∗
2

]
=0.

(50)�l(A+B)≤�l+m(A)+�L−m(B), m=0, 1, … , L− l,

◾

◾
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for each l=1, … , L, with equality for a certain pair l, m if and 
only if there is a nonzero vector c such that Ac=�l+m(A)c,  
Bc=�L−m(B)c, and (A+B)c=�l(A+B)c.

Furthermore,

for each l=1, … , L, with equality for a certain pair l,m if 
and only if there is a nonzero vector c such Ac=�l−m+1(A)c,  
Bc=�m(B)c, and (A+B)c=�l(A+B)c. If A and B have a 
non‐common eigenvector, each inequality in (50) and (51) is 
a strict inequality.
Poincare Separation Theorem  [37]   Let A be an L×L 

Hermitian matrix and U be an L×m (m≤L) matrix 
whose columns are orthonormal. Let B=UHAU and 
the eigenvalues of A and B be arranged in increasing 
order. Then, we obtain

Using the Hermann Weyl theorem, it can be conveniently 
demonstrated that

Moreover, from Proposition 3, (53) and (54) can be reex-
pressed as follows:

Using the Poincare separation theorem, we can develop 
the following proposition:

Proposition 4  For the eigenvalues of QH
1

[Ry+DTRyD]Q1 
and Ry+DTRyD, we obtain

Proof.   Because Ry+DTRyD is a 2N×2N Hermitian 
matrix and Q1 is a 2N× (2N−1) matrix satisfying 
QH

1
Q1 = I2N−1, we can derive the following from the 

Poincare separation theorem:

Because �1(Ry+DTRyD)=�2(Ry+DTRyD) from (45), 
we obtain (57). Moreover, from the Poincare separation the-
orem, we obtain

Because �2N−1(Ry+DTRyD)=�2N(Ry+DTRyD) from 
(45), we obtain (58).

By applying a similar approach to �1(Ry), �1(QHRyQ), 
�2N(Ry), and �2N−1(QHRyQ), we can obtain

By using Proposition 4, we obtain the following relation:

From (55) and (56), we can obtain the following inequal-
ity between the eigenvalue spreads of the proposed and con-
ventional schemes:

From [37], this result implies that the proposed adaptive 
receiver provides a higher convergence speed in the mean 
sense than the conventional adaptive scheme does.

6  |   SIMULATION RESULTS

This section describes a computer simulation that we 
performed to compare the performance of the proposed 
and conventional blind adaptive algorithms. We com-
pared the learning curves of the output SINR averaged 
for the two symbols s1(2n−1) and s1(2n), and the steady‐
state BER.

When the detection filters w1(n) and w2(n) are used, the 
output SINR averaged for the two symbols is defined by

where Im is an interference plus noise expressed as follows:

Each user is equipped with two transmit antennas, and 
the BS is equipped with N = 128 receiving antennas. Each 

(51)�l−m+1(A)+�m(B)≤�l(A+B), m=0, 1, … , l,

(52)�l(A)≤�l(B)≤�l+L−m(A), l=1, … , m.

(53)�2N(Ry+DTRyD)≤�2N(Ry)+�2N(DTRyD),

(54)�1(Ry)+�1(DTRyD)≤�1(Ry+DTRyD).

(55)�2N(Ry+DTRyD)≤2�2N(Ry),

(56)2�1(Ry)≤�1(Ry+DTRyD).

(57)�1(Q
H
1

[Ry+DTRyD]Q1)=�1(Ry+DTRyD),

(58)�2N−1(Q
H
1

[Ry+DTRyD]Q1)=�2N(Ry+DTRyD).

(59)
�1(Ry+DTRyD)≤�1(Q

H[Ry+DTRyD]Q)

≤�2(Ry+DTRyD).

(60)
�2N−1(Ry+DTRyD)≤�2N−1(Q

H[Ry+DTRyD]Q)

≤�2N(Ry+DTRyD).

(61)�1(QHRyQ)=�1(Ry),

(62)�2N−1(QHRyQ)=�2N(Ry).

(63)

�(QH
1

[Ry+DTRyD]Q1)=
�2N−1(Q

H
1

[Ry+DTRyD]Q1)

�1(Q
H
1

[Ry+DTRyD]Q1)

=
�2N−1(Ry+DTRyD)

�1(Ry+DTRyD)
.

(64)

�(QH
1

[Ry+DTRyD]Q1)≤
2�2N−1(Ry)

2�1(Ry)

=
2�2N−1(QH

1
RyQ1)

2�1(QH
1

RyQ1)
=�(QH

1
RyQ1).

(65)SINR(n)=
1

2

2∑
m=1

|wH
m

(n)g1,m|2
Im

,

(66)
Im =

K∑
k=1

{|wH
m

(n)gk,1|2+ |wH
m

(n)gk,2|2
}

+ �2
v
∥wm(n)∥2 −|wH

m
(n)g1,m|2.

◾

◾

◾
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element of the channel vectors hk,m, k=1, 2, … , K, m=1, 2, 
is generated by independent and identically distributed (i.i.d.) 
Rayleigh fading with zero mean and unit variance.

Figure 2 shows the learning curves of the averaged out-
put SINR for the proposed and conventional blind adap-
tive algorithms when the number of receiving antennas 
at the BS is N = 128 and the number of users is K = 10. 
The simulation results were averaged by 500 independent 
channel generations. In the figure, the black and red curves 
represent the performance of the conventional scheme for 
the step‐sizes �c =1×10−5 and �c =8×10−6, respectively. 
The blue curve illustrates the performance of the proposed 
scheme for the step‐size �p =1×10−5. The figure shows 

that the proposed scheme exhibits higher steady‐state 
SINR than the conventional scheme does for identical step 
size. Moreover, by comparing the red and blue curves, we 
observe that the proposed scheme exhibits a higher con-
vergence speed than the conventional scheme has for an 
identical steady‐state SINR.

Figure 3 shows the learning curves of the averaged output 
SINR when the number of users varies at the symbol time 
n = 2000 and equal step‐sizes are used for the proposed and 
conventional schemes. The number of users starts with K = 8 
and then varies to K = 12 at the symbol time n = 2000. The 
step‐size is �c =�p =1×10−5 until the symbol time n = 2000. 
Thereafter, it is varied to �c =�p =7×10−6. When the  
number of users varies, the SINR performance of the proposed 

F I G U R E  2   SINR comparison of proposed and conventional 
schemes for uplink massive MIMO systems when N = 128, K = 10, 
and SNR = 20 dB
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F I G U R E  3   SINR comparison of proposed and conventional 
schemes for uplink massive MIMO systems when number of users 
varies at symbol time n = 2000
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F I G U R E  4   SINR comparison of proposed and conventional 
schemes for uplink massive MIMO systems when different step‐sizes 
are used for both schemes
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F I G U R E  5   Steady‐state BER comparison of proposed and 
conventional schemes for uplink massive MIMO systems when 
number of users is K = 10, 20, and 25
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and conventional schemes deteriorates instantaneously. Then, 
both the schemes recover their SINR performance. We also 
observe that the proposed scheme exhibits higher steady‐state 
SINR performance than the conventional scheme does for an 
identical step‐size even when the number of users varies.

Figure 4 shows the learning curves of the averaged output 
SINR when different step‐sizes are used for the proposed and 
conventional schemes, and when the number of users varies 
at the symbol time n = 2000. Until the symbol time n = 2000, 
the step‐sizes for the proposed and conventional schemes are 
�c =8×10−6 and �p =1×10−5, respectively. Thereafter, they 
are altered to �c =5.6×10−6 and �p =7×10−6, respectively. 
When the step‐size of the conventional scheme is smaller 
than that of the proposed scheme, the steady‐state SINR for 
the proposed and conventional schemes is almost identical. 
However, the proposed scheme exhibits a higher convergence 
speed than the conventional scheme does. Therefore, even 
when the number of users varies, the proposed scheme exhib-
its a higher convergence speed than the conventional scheme 
does.

Figure 5 shows the steady‐state BER curves for the pro-
posed and conventional schemes when the number of users is 
k = 10, 20, and 25. In the figure, we have adjusted the step‐
sizes of the proposed and conventional schemes to equalize 
the convergence speed. The steady‐state BERs have been 
calculated after adequate convergence of the filter weighting 
vectors. The figure shows that the proposed scheme exhibits 
a lower steady‐state BER performance than the conventional 
scheme for all the different numbers of users and that the 
performance difference increases as the received SNR in-
creases. We also observe that the BER performances of both 
the proposed and conventional schemes deteriorate when the 
number of users increases. This is because the interchannel 
interference increases in proportion to the number of users.

7  |   CONCLUSIONS

In this paper, we propose a blind adaptive receiver design 
for uplink multiuser massive MIMO systems when each user 
employs Alamouti’s simple STBC to transmit its information 
symbols. Because the number of receiving antennas of the 
BS is very large, it is impractical to implement the receiving 
filters with a batch‐processing algorithm owing to the com-
plexity of the inverse matrix calculation.

Therefore, we present a fast‐converging blind adaptive 
algorithm for uplink multiuser massive MIMO systems. 
First, we derive a special relation between the optimal filter 
weighting vectors for odd‐indexed symbols and even‐indexed 
symbols. Then, we propose a new blind adaptive algorithm 
using the special relation. In the proposed scheme, detection‐
filter weighting vectors are updated only in the region satisfy-
ing the special relation. Through a theoretical analysis of the 

convergence speed and a computer simulation, we demon-
strate that the proposed scheme exhibits a higher convergence 
speed than the conventional scheme for an identical steady‐
state SINR. We also demonstrate that the former exhibits a 
higher steady‐state SINR than the conventional scheme for 
an identical convergence speed. We further illustrate that the 
proposed scheme exhibits a lower steady‐state BER perfor-
mance than the conventional scheme does for an identical 
convergence speed.
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