Browse > Article
http://dx.doi.org/10.4218/etrij.2018-0559

Blind adaptive receiver for uplink multiuser massive MIMO systems  

Shin, Joonwoo (Division of Navigation Science, Korea Maritime and Ocean University)
Seo, Bangwon (Division of Electrical, Electronics and Control Engineering, The Institute of IT Convergence Technology, Kongju National University)
Publication Information
ETRI Journal / v.42, no.1, 2020 , pp. 26-35 More about this Journal
Abstract
Herein, we consider uplink multiuser massive multiple-input multiple-output systems when multiple users transmit information symbols to a base station (BS) by applying simple space-time block coding (STBC). At the BS receiver, two detection filters for each user are used to detect the STBC information symbols. One of these filters is for odd-indexed symbols and the other for even-indexed symbols. Using constrained output variance metric minimization, we first derive a special relation between the closed-form optimal solutions for the two detection filters. Then, using the derived special relation, we propose a new blind adaptive algorithm for implementing the minimum output variance-based optimal filters. In the proposed adaptive algorithm, filter weight vectors are updated only in the region satisfying the special relation. Through a theoretical analysis of the convergence speed and a computer simulation, we demonstrate that the proposed scheme exhibits faster convergence speed and lower steady-state bit error rate than the conventional scheme.
Keywords
blind adaptive receiver; multiuser MIMO; output variance; STBC; uplink massive MIMO;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Honig, U. Madhow, and S. Verdu, Blind adaptive multiuser detection, IEEE Trans. Inform. Theory 41 (1995), no. 4, 944-960.   DOI
2 X. Wang and H.V. Poor, Blind equalization and multiuser detection in dispersive CDMA channels, IEEE Trans. Commun. 46 (1998), no. 1, 91-103.   DOI
3 U. Madhow, Blind adaptive interference suppression for direct-sequence CDMA, Proc. IEEE 86 (1998), no. 10, 2049-2069.   DOI
4 M. Honig and M.K. Tsatsanis, Adaptive techniques for multiuser CDMA receivers, IEEE Signal Process. Mag. 17 (2000), no. 3, 49-61.   DOI
5 Z. Xu and M.K. Tsatsanis, Blind adaptive algorithms for minimum variance CDMA receivers, IEEE Trans. Commun. 49 (2001), no. 1, 180-194.   DOI
6 D. Reynolds, X. Wang, and H.V. Poor, Blind adaptive space-time multiuser detection with multiple transmitter and receiver antennas, IEEE Trans. Signal Process. 50 (2002), no. 6, 1261-1276.   DOI
7 X. Liu, K.C. The, and E. Gunawan, A blind adaptive MMSE multiuser detector over multipath CDMA channels and its analysis, IEEE Trans. Wireless Commun. 7 (2008), no. 1, 90-97.   DOI
8 A. Elnashar, S. Elnoubi, and H.A. El-Mikati, Performance analysis of blind adaptive MOE multiuser receivers using inverse QRD-RLS algorithm, IEEE Trans. Circuits Syst. 55 (2008), no. 1, 398-411.   DOI
9 R.C. de Lamare and R. Sampaio-Neto, Blind adaptive MIMO receivers for space-time block-coded DS-CDMA systems in multipath channels using the constant modulus criterion, IEEE Trans. Commun. 58 (2010), no. 1, 21-27.   DOI
10 R.C. de Lamare, R. Sampaio-Neto, and M. Haardt, Blind adaptive constrained constant-modulus reduced-rank interference suppression algorithms based on interpolation and switched decimation, IEEE Trans. Signal Process. 59 (2011), no. 2, 681-695.   DOI
11 G. Yang et al., A Kalman filter-based blind adaptive multi-user detection algorithm for underwater acoustic networks, IEEE Sensors J. 16 (2016), no. 11, 4023-4033.   DOI
12 R.C. de Lamare and P.S.R. Diniz, Blind adaptive interference suppression based on set-membership constrained constant-modulus algorithms with dynamic bounds, IEEE Trans. Signal Process. 61 (2013), no. 5, 1288-1301.   DOI
13 M.Z.A. Bhotto and I.V. Bajic, Constant modulus blind adaptive beamforming based on unscented Kalman filtering, IEEE Signal Process. 22 (2015), no. 4, 474-478.   DOI
14 S.S. Khalid and S. Abrar, Blind adaptive algorithm for sparse channel equalisation using projections onto ${\ell}$-ball, Electr. Lett. 51 (2015), no. 18, 1422-1424.   DOI
15 S. Haykin, Adaptive filter theory, 3rd ed., Prentice-Hall, Englewood Cliffs, NJ, 1996.
16 Y. Gu et al., Convergence analysis of a deficient length LMS filter and optimal-length sequence to model exponential decay impulse response, IEEE Signal Process. Lett. 10 (2003), no. 1, 4-7.   DOI
17 A. Hjorungnes and D. Gesbert, Complex-valued matrix differentiation: Techniques and key results, IEEE Trans. Signal Process. 55 (2007), no. 6, 2740-2746.   DOI
18 R.A. Horn and C.R. Johnson, Matrix analysis, ch. 4, Cambridge University Press, Cambridge, UK, 1993.
19 A. Gupta and R.K. Jha, A survey of 5G network: Architecture and emerging technologies, IEEE Access 3 (2015), 1206-1232.   DOI
20 J.G. Andrews et al., What will 5G be? IEEE J. Sel. Areas Commun. 32 (2014), no. 6, 1065-1082.   DOI
21 E.G. Larsson et al., Massive MIMO for next generation wireless systems, IEEE Commun. Mag. 52 (2014), no. 2, 186-195.   DOI
22 T.L. Marzetta, Noncooperative cellular wireless with unlimited numbers of base station antennas, IEEE Trans. Wireless Commun. 9 (2010), no. 11, 3590-3600.   DOI
23 F. Rusek et al., Scaling up MIMO: Opportunities and challenges with very large array, IEEE Signal Process. Mag. 30 (2013), no. 1, 40-60.   DOI
24 Y.-H. Nam et al., Full-dimension MIMO (FD-MIMO) for next generation cellular technology, IEEE Commun. Mag. 51 (2013), no. 6, 172-179.   DOI
25 L. Lu et al., An overview of massive MIMO: Benefits and challenges, IEEE J. Select. Topics Signal Process. 8 (2014), no. 5, 742-758.   DOI
26 E. Bjornson, E.G. Larsson, and T.L. Marzetta, Massive MIMO: Ten myths and one critical question, IEEE Commun. Mag. 54 (2016), no. 2, 114-123.   DOI
27 E. Biglieri, Y. Hong, and E. Viterbo, On fast-decodable space-time block codes, IEEE Trans. Inf. Theory 55 (2009), no. 2, 524-530.   DOI
28 S.M. Alamouti, A simple transmit diversity technique for wireless communications, IEEE J. Sel. Areas Commun. 16 (1998), no. 8, 1451-1458.   DOI
29 V. Tarokh, H. Jafarkhani, and A.R. Calderbank, Space-time block codes from orthogonal designs, IEEE Trans. Inf. Theory 45 (1999), no. 5, 1456-1467.   DOI
30 E. Basar and U. Aygolu, Full-rate full-diversity STBCs for three and four transmit t antennas, Electron. Lett. 44 (2008), no. 18, 1076-1077.   DOI
31 D. Lee, Symbol error rate analysis of scheduled STBC with power allocation in CR-MIMO systems, IEEE Trans. Veh. Technol. 67 (2018), no. 7, 6218-6228.   DOI
32 E. Basar and U. Aygolu, High-rate full-diversity space-time block codes for three and four transmit antennas, IET Commun. 3 (2009), no. 8, 1371-1378.   DOI
33 N. Varshney and A.K. Jagannatham, MIMO-STBC based multiple relay cooperative communication over time-selective Rayleigh fading links with imperfect channel estimates, IEEE Trans. Vehic. Technol. 66 (2017), no. 7, 6009-6025.   DOI
34 X. Meng, X.-G. Xia, and X. Gao, Omnidirectional space-time block coding for common information broadcasting in massive MIMO systems, IEEE Trans. Wireless Commun. 17 (2018), no. 3, 1407-1417.   DOI
35 P.B. Rapajic and B.S. Vucetic, Adaptive receiver structures for asynchronous CDMA systems, IEEE J. Select. Areas Commun. 12 (1994), no. 4, 685-697.   DOI
36 D.C. Araujo et al., Massive MIMO: Survey and future research topics, IET Commun. 10 (2016), no. 15, 1938-1946.   DOI
37 S.L. Miller, An adaptive direct-sequence code-division multiple-access receiver for multiuser interference rejection, IEEE Trans. Commun. 43 (1995), no. 2/3/4, 1746-1755.   DOI