• 제목/요약/키워드: Mineralogy

Search Result 470, Processing Time 0.023 seconds

Paleoproterozoic Hot Orogenesis Recorded in the Yeongnam Massif, Korea (영남육괴에 기록된 고원생대 고온조산운동)

  • Lee, Yuyoung;Cho, Moonsup
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.199-214
    • /
    • 2022
  • The Yeongnam Massif is one of representative basement provinces in the Korean Peninsula, which has experienced high-temperature, low-pressure (HTLP) regional metamorphism and partial melting. Here we reviewed recent developments in Paleoproterozoic (1.87-1.84 Ga) hot orogenesis of the Yeongnam Massif, typified by the granulite-facies metamorphism and partial melting recorded in the HTLP rocks. In particular, spatiotemporal linkage between the metamorphic and magmatic activities, including the Sancheong-Hadong anorthositic magma as a heat source, provides a key to understand the widespread HTLP metamorphism and partial melting in the Yeongnam Massif. Crustal anatexis, resulting from the fluid-present melting and muscovite/biotite dehydration melting, has yielded various types of leucosomes and leucogranites. Zircon and monazite petrochronology, using in-situ U(-Th)-Pb data from the secondary ion mass spectrometry, indicates that the HTLP metamorphism and anatexis lasted over a period of ~15 Ma at ca. 1870-1854 Ma. In addition, a fluid influx event at ca. 1840 Ma was locally recognized by the occurrence of incipient charnockite. Taken together, the Yeongnam Massif preserves a prolonged evolutionary record of the HTLP metamorphism, partial melting, and fluid influx diagnostic for a hot orogen. Such an orogen is linked to the Paleoproterozoic orogeny widespread in the North China Craton, and most likely represents the final phase of crustal evolution in the Columbia/Nuna supercontinent.

Elucidation of the Enrichment Mechanism of the Naturally Originating Fluorine Within the Eulwangsan, Yongyudo: Focusing on the Study of the Fault zone (용유도 을왕산 자연기원 불소의 부화기작 규명: 단층대 연구를 중심으로)

  • Lee, Jong-Hwan;Jeon, Ji-Hoon;Lee, Seung-Hyun;Kim, Soon-Oh
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.377-386
    • /
    • 2022
  • In addition to anthropogenic origins, fluorine (F) is naturally enriched in rocks due to geological events, such as magma dissemination, hydrothermal alteration, mineralization, and fault activities. Generally, it has been well known that F is chiefly enriched in the region of igneous and metamorphic rocks, and biotite granite was mostly distributed in the study area. The F enrichment mechanism was not sufficiently elucidated in the previous studies, and the study on a fault zone was conducted to reveal it more precisely. The mineral composition of the fault zone was identical to that of the Eulwangsan biotite granite (EBG), but they were quantitatively different between the two areas. Compared with the EBG, the fault zone showed relatively higher contents of quartz and F-bearing minerals (fluorite, sericite) but lower contents of plagioclase and alkali feldspar. This difference was likely due to hydrothermal mineral alterations. The results of microscopic observations supported this, and the generation of F-bearing minerals by hydrothermal alterations was recognized in most samples. Accordingly, it might be interpreted that the mineralogical and petrological differences observed in the same-age biotite granite widely distributed in the Yongyudo was caused by the hydrothermal alterations due to small-scale geological events.

Upper Mantle Heterogeneity Recorded by Microstructures and Fluid Inclusions from Peridotite Xenoliths Beneath the Rio Grande Rift, USA (미국 리오 그란데 리프트 페리도타이트 포획암의 미구조와 유체포유물에 기록된 상부맨틀의 불균질성)

  • Park, Munjae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.273-281
    • /
    • 2022
  • Mantle heterogeneity is closely related to the distribution and circulation of volatile components in the Earth's interior, and the behavior of volatiles in the mantle strongly influences the rheological properties of silicate rocks. In mantle xenoliths, these physicochemical properties of the upper mantle can be recorded in the form of microstructures and fluid inclusions. In this paper, I summarized and reviewed the results of previous studies related to the characteristics of microstructures and fluid inclusions from peridotite xenoliths beneath the Rio Grande Rift (RGR) in order to understand the evolution and heterogeneity of upper mantle. In the RGR, the mantle peridotites are mainly reported in the rift axis (EB: Elephant Butte, KB: Kilbourne Hole) and rift flank (AD: Adam's Diggings) regions. In the case of the former (EB and KB peridotites), the type-A lattice preferred orientation (LPO), formed under low-stress and low-water content, was reported. In the case of the latter (AD peridotites), the type-C LPO, formed under low-stress and high-water content, was reported. In particular, in the case of AD peridotites, at least two fluid infiltration events, such as early (type-1: CO2-N2) and late (type-2: CO2-H2O), have been recorded in orthopyroxene. The upper mantle heterogeneity recorded by these microstructures and fluid inclusions is considered to be due to the interaction between the North American plate and the Farallon plate.

Genetic Environments at the Ssangjeon Tungsten-bearing Hydrothermal Vein Deposit (쌍전 함 텅스텐 열수 맥상광상의 생성환경)

  • Sunjin Lee;Sang-Hoon Choi
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.689-699
    • /
    • 2022
  • The Ssangjeon tungsten deposit is located within the Yeongnam Massif. Within the area a number of hydrothermal quartz veins were formed by narrow open-space filling of parallel and subparallel fractures in the metasedimentary rocks as Wonnam formation, Buncheon granite gneiss, amphibolite and/or pegmatite. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz vein; stage II, barren quartz vein) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of arsenopyrite with pyrite; middle, characterized by introduction of wolframite and scheelite with Ti-Fe-bearing oxides and base-metal sulfides; late, marked by Bi-sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥370℃) and later lower temperatures (≈170℃) from H2O-CO2-NaCl fluids with salinities between 18.5 to 0.2 equiv. wt. % NaCl of Ssangjeon hydrothermal system. The relationship between salinity and homogenization temperature indicates a complex history of boiling, fluid unmixing (CO2 effervescence), cooling and dilution via influx of cooler, more dilute meteoric waters over the temperature range ≥370℃ to ≈170℃. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Ssangjeon hydrothermal system with increasing paragenetic time.

The Discoloration Characteristics of Orpiment used as Traditional Yellow Mineral Pigments in Painting Cultural Properties (채색문화재에 적용된 전통 황색 광물안료 석황의 채색 특성)

  • Jin Young Do
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.1-17
    • /
    • 2023
  • On painting cultural properties to which Orpiment, a traditional yellow mineral pigment, is applied, the color's degeneration is frequently observed. To identify the cause of the degeneration, this study takes a look into orpiment and the various pigments that are mixed into it (Lead White, Lead Red, and Cinnabar) in powder and painting state. The pigment was mixed with Argyo glue and then applied to korean traditional paper and silk. Considering the possibility that alum causes the discoloration, it was applied to the specimen. With a UV tester, the powders and the painted specimens were subjected to a light resistance test in three phases (96 hour). Color changes were measured with a colorimeter and minerals, chemical composition and structural changes were analysed by XRD, SEM/EDS and Raman spectrometers. While the color change of pure Orpiment powder according to the light resistance test was small, the colored specimen became darker. The color change was large in the Orpiment colored on the silk and in the alum-treated specimen. In Orpiment powder was produced white arsenolite as altered orpiment after UV test. In the mixed powder of Orpiment and Lead White were detected only the constituent minerals of Orpiment and Lead White, and no altered substances were produced. Whereas after the UV test, orpiment and arsenolite, which were altered substances of orpiment, and the constituent minerals of Lead White were detected. In the case of mixing the two pigments in the powder state, darkening did not occur even by the UV test. However, the specimens colored with the mixed powder were darkened by the UV test. The color change of Orpiment was different depending on the mixed pigment and base material. The color change was greater in the case of alum treatment than in the case without alum treatment, and it was found that alum also had an influence on the color change of Orpiment.

Study on Constituent Minerals and Illitization Characteristics of Yeongdong Illite Ore (영동 일라이트 광체의 구성광물 및 일라이트화 특성 연구)

  • EunJi Baek;Yu Na Lee;Byeongyong Yu;Dongbok Shin;Youngseuk Keehm;Sun Young Park;Hyun Na Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.41-54
    • /
    • 2023
  • Illite is a common mineral that forms readily from feldspar and mica via hydrothermal alteration and exhibits various characteristics depending on the degree of hydrothermal alteration. To ensure continued mining of high-quality illite ore, it is crucial to understand the illitization. Thus, this study collected ores from two illite ore deposit and their surrounding alteration zones in Yeongdong-gun, Chungcheongbuk-do, a significant source of illite in the Republic of Korea, to determine the constituent mineral contents and textural characteristics. Polarized light microscopy analyses revealed that the illite ore deposit were highly illitized with little remaining textural characteristics of the parent mica schist, and only some quartz was present. The ore zone contained illite, muscovite, quartz, and feldspar, with illitization primarily occurring around feldspar and quartz. X-ray diffraction analyses identified that the content of illite/muscovite was approximately 50-75 wt.%, with a maximum of 75 wt.%. Additionally, X-ray fluorescence analyses indicated a linear increase in K2O content with increasing illite content, showing the highest correlation among the major components analyzed. It is suggested that the illite in the Yeongdong area results from feldspar and quartz alteration by hydrothermal fluids along the fault, with illitization of feldspar occurring before that of quartz. The results of this study are expected to contribute to the development of high-quality illite ore deposit in Yeongdong, Chungcheongbuk-do.

A Study on the Removal of Fluorine from Leachate of Reclaimed Mine Waste Dump Site Using Alum Coagulation (알럼 응집을 이용한 광산폐기물 적치장 침출수 내 불소 제거 연구)

  • Sang-Woo Lee;Woo-Chun Lee;Seong Hee Kim;Sang Heon Jeong;Bo Young Lee;Sang-Hwan Lee;Soon-Oh Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.19-32
    • /
    • 2023
  • This study was conducted to remove fluorine (F) (initial concentration of 9.5 mg/L) from leachate of reclaimed mine waste dump site via different methods: (1) co-precipitation using Ca-based materials; (2) adsorption using activated carbon and fly ash; and (3) coagulation and sedimentation using alum. The F removal efficiencies of each case were estimated as 65.6% (Ca co-precipitation), 27.9% (adsorption of activated carbon), 71.5% (adsorption of fly ash), and 96.6% (alum coagulation and sedimentation). In addition, the applicability of the continuous treatment process using alum coagulation was evaluated by lab-scale experiments using simulated mine drainage containing F of lower (6.4 mg/L) and higher (15.7 mg/L) concentrations, and it was confirmed that the treatment of both cases met the domestic standard (below 3 mg/L) for discharged water in clean areas. Furthermore, the results of bench-scale field tests indicated that the water quality standard of discharged water could be satisfied with the proper operation and management of the process.

Cs Fixation and Leaching Characteristics of High Temperature-Treated Todorokite (고온 처리된 토도로카이트의 Cs 고정 및 용출 특성)

  • Seongyeop Kim;Yeongkyoo Kim;Changyun Park
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.33-40
    • /
    • 2023
  • Todorokite is a manganese oxide mineral containing Mg2+ in a tunnel structure in which MnO6 octahedra share corners. In order to investigate the suitability and efficiency of high temperature-treated todorokite as a material for adsorption and fixation of Cs, Cs was ion exchanged and the amount of leached Cs from todorokite was measured. The todorokite used in this study was synthesized by transforming Na-birnessite to Mg-buserite and used as a precursor. After high temperature treatment, Cs exchanged todorokite changed to birnessite and hausmannite as the temperature increased. The amount of leached Cs was investigated for Cs exchanged todorokite which was reacted with distilled water and 1 M NaCl solution at different reaction times. In general, for the samples reacted with 1 M NaCl solution, the fixation of Cs was quite effective, although the amount of leached Cs was greater due to the ion exchange reaction with Na. As the treatment temperature increased, the amount of leached Cs increased and then decreased again, which was related to the mineral phases formed at each temperature. As birnessite was formed, the amount of leached Cs increased, but as birnessite decreased, that decreased again. As the mineral phase changed to hausemanite, the amount of Cs decreased rapidly. The results of our study show that Cs exchanged todorokite can be used as a material that effectively fixes Cs and prevents its diffusion by high temperature treatment.

Changes in Cobalt Adsorption Properties of Montmorillonite by Dehydration (탈수 작용에 따른 몬모릴로나이트의 코발트 흡착 특성 변화)

  • Yeongjun Jang;Yeongkyoo Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.107-115
    • /
    • 2023
  • Cobalt can be released into the natural environment as industrial waste from the alloying industry and as acid mine drainage, and it is also a radionuclide (60Co) that constitutes high-level radioactive waste. Smectite is a mineral that can be useful for adsorption and isolation of this element. In this study, Cheto-type montmorillonite (Cheto-MM), which is the source clays of The Clay Mineral Society (CMS) and already well-characterized, was used. The effect of the adsorption site affected by the presence of interlayer water on the adsorption of cobalt before and after dehydration by heating was evaluated and the adsorption mechanism of cobalt on Cheto-MM was studied by applying adsorption kinetics and adsorption isotherm models. The results showed that the adsorption characteristics changed with dehydration and subsequent shrinkage, and cobalt was found to be adsorbed at the edge of Cheto-MM for about 38% and adsorbed at the interlayer site for about 62%, suggesting that the cobalt adsorption of Cheto-MM is significantly influenced by the interlayer. By applying the adsorption kinetic models, the cobalt adsorption kinetics of Cheto-MM is explained by a pseudo-second-order model, and the concentration-dependent adsorption was best described by the Langmuir isotherm adsorption model. This study provides basic knowledge on the adsorption characteristic of cobalt on montmorillonite with different adsorption sites and is expected to be useful in predicting the adsorption behavior of smectite in high-level radioactive waste disposal sites in the future.

Geochemical Implication of Rare Earth Element pattern and Rb-Sr mineral isochron from consituent minerals in the Naedeokri-Nonggeori granite, Yeongnam Massif, Korea (영남육괴 북동부 내덕리-농거리 화강암내 구성광물의 희토류원소 분포도 및 Rb-Sr 광물연대의 지구화학적 의의)

  • Seung-Gu Lee;SeungRyeol Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.125-134
    • /
    • 2023
  • The Naedeokri and Nonggeori granites are early Proterozoic granites of the Taebaek-Sangdong area in the northeastern part of the Yeongnam Massif. In this paper, rare earth elements (REEs) concentrations of the minerals in Naedeokri and Nonggeori granites and Rb-Sr mineral isochron age are reported. Except zircon, the constituent minerals such as mica, feldspar, quartz, and tourmaline show LREE-enriched and HREE-depleted REE patterns with relatively large Eu negative anomaly. However, zircon has geochemical characteristic of LREE- and HREE-enriched REE pattern with large Eu positive anomaly. This pattern suggests that zircon should be hydrothermal zircon due to deuteric hydrothermal alteration. In addition, the Rb-Sr mineral age of Naedeokri granite indicates an age value of 1.814±142(2σ) Ma. The Rb-Sr whole rock age including pervious data of Naedeokri and Nogggeori granite indicates an age value of 1,707±74(2σ) Ma. This value is younger than the Sm-Nd isochron of 1.87 Ga, indicating that the Rb-Sr isotope system may be re-homogenized by hydrothermal alteration during the transition from a magmatic to a hydrothermal system.