DOI QR코드

DOI QR Code

Upper Mantle Heterogeneity Recorded by Microstructures and Fluid Inclusions from Peridotite Xenoliths Beneath the Rio Grande Rift, USA

미국 리오 그란데 리프트 페리도타이트 포획암의 미구조와 유체포유물에 기록된 상부맨틀의 불균질성

  • Park, Munjae (Department of Earth and Environmental Sciences, Chungbuk National University)
  • 박문재 (충북대학교 지구환경과학과)
  • Received : 2022.09.18
  • Accepted : 2022.09.23
  • Published : 2022.09.30

Abstract

Mantle heterogeneity is closely related to the distribution and circulation of volatile components in the Earth's interior, and the behavior of volatiles in the mantle strongly influences the rheological properties of silicate rocks. In mantle xenoliths, these physicochemical properties of the upper mantle can be recorded in the form of microstructures and fluid inclusions. In this paper, I summarized and reviewed the results of previous studies related to the characteristics of microstructures and fluid inclusions from peridotite xenoliths beneath the Rio Grande Rift (RGR) in order to understand the evolution and heterogeneity of upper mantle. In the RGR, the mantle peridotites are mainly reported in the rift axis (EB: Elephant Butte, KB: Kilbourne Hole) and rift flank (AD: Adam's Diggings) regions. In the case of the former (EB and KB peridotites), the type-A lattice preferred orientation (LPO), formed under low-stress and low-water content, was reported. In the case of the latter (AD peridotites), the type-C LPO, formed under low-stress and high-water content, was reported. In particular, in the case of AD peridotites, at least two fluid infiltration events, such as early (type-1: CO2-N2) and late (type-2: CO2-H2O), have been recorded in orthopyroxene. The upper mantle heterogeneity recorded by these microstructures and fluid inclusions is considered to be due to the interaction between the North American plate and the Farallon plate.

맨틀 불균질성은 지구 내부의 휘발성 성분의 분포 및 순환과 밀접한 관련이 있으며, 맨틀에서 휘발성 물질의 거동은 규산염암의 유변학적 특성에도 큰 영향을 미친다. 이와 같은 상부맨틀의 물리화학적 특성은 미구조와 유체포유물의 형태로 맨틀 포획암에 기록될 수 있다. 본 논문에서는 미국 리오 그란데 리프트 지역에서 산출되는 페리도타이트 포획암의 미구조와 유체포유물의 특성과 관련된 이전 연구결과들을 요약 및 리뷰하였으며, 이를 통해 이 지역의 상부맨틀의 진화과정과 불균질성에 대해 이해하고자 한다. 리오 그란데 리프트에서 맨틀 포획암이 산출되는 지역은 크게 리프트 중심부인 리프트 축(rift axis) 지역(EB: Elephant Butte, KB: Kilbourne Hole)과 리프트 연변부인 리프트 측면(rift flank) 지역(AD: Adam's Diggings)으로 나눠진다. 전자(EB 및 KB 페리도타이트)의 경우 응력이 낮고 물함량이 적은 조건에서 형성되는 type-A 격자선호방향이 보고되었고, 후자(AD 페리도타이트)의 경우 응력이 낮고 물함량이 많은 조건에서 형성되는 type-C 격자선호방향이 보고된 바 있다. 특히, AD 페리도타이트의 경우 초기(type-1: CO2-N2) 및 후기(type-2: CO2-H2O)와 같은 최소 두번의 유체 침투 사건이 사방휘석 내에 기록되어있다. 이와 같은 미구조 및 유체포유물에 기록된 상부맨틀의 불균질성은 북미 판과 Farallon 판 사이의 상호작용에 기인한 것으로 추정된다.

Keywords

Acknowledgement

이 논문은 2021년도 충북대학교 학술연구지원사업의 연구비 지원에 의하여 연구되었습니다. 논문 심사과정에서 유익한 조언을 해 주신 두 분의 심사위원님과 편집위원장님께 감사드립니다.

References

  1. Baldridge, W.S., Perry, F.V., Vaniman, D.T., Nealey, L.D., Leavy, B.D., Laughlin, A.W., Kyle, P., Bartov, Y., Steinitz, G. and Gladney, E.S., 1991, Middle to late cenozoic magmatism of the southeastern Colorado plateau and central Rio Grande rift (New Mexico and Arizona, U.S.A.) : a model for continental rifting. Tectonophysics, 197, 327-354. https://doi.org/10.1016/0040-1951(91)90049-X
  2. Behr, W.M. and Smith, D., 2016, Deformation in the mantle wedge associated with Laramide flat-slab subduction. Geochemistry, Geophysics, Geosystems, 17, 2643-2660. https://doi.org/10.1002/2016GC006361
  3. Belkin, H.E. and De Vivo, B., 1989, Glass, phlogopite, and apatite in spinel peridotite xenoliths from Sardinia (Italy): Evidence for mantle metasomatism. New Mexico Bureau Mines and Mineralogy Research Bulletin, 131, 20.
  4. Bodnar, R.J., Binns, P.R. and Hall, D.L., 1989, Synthetic fluid inclusions - VI. Quantitative evaluation of the decrepitation behaviour of fluid inclusions in quartz at one atmosphere confining pressure. Journal of Metamorphic Geology, 7, 229-242. https://doi.org/10.1111/j.1525-1314.1989.tb00586.x
  5. Brey, G.P. and Kohler, T., 1990, Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology, 31, 1353-1378. https://doi.org/10.1093/petrology/31.6.1353
  6. Connolly, J.A.D., 2009, The geodynamic equation of state: What and how. Geochemistry, Geophysics, Geosystems, 10, Q10014.
  7. Connolly, J.D. and Trommsdorff, V., 1991, Petrogenetic grids for metacarbonate rocks: pressure-temperature phase-diagram projection for mixed-volatile systems. Contributions to Mineralogy and Petrology, 108, 93-105. https://doi.org/10.1007/BF00307329
  8. Copeland, P., Murphy, M.A., Dupre, W.R. and Lapen, T.J., 2011, Oligocene Laramide deformation in southern New Mexico and its implications for Farallon plate geodynamics. Geosphere, 7, 1209-1219. https://doi.org/10.1130/GES00672.1
  9. Dickinson, W.R. and Snyder, W.S., 1978, Plate tectonics of the Laramide orogeny. Geological Society of America Memoirs, 151, 355-366. https://doi.org/10.1130/MEM151-p355
  10. Gao, W., Grand, S.P., Baldridge, W.S., Wilson, D., West, M., Ni, J.F. and Aster, R., 2004, Upper mantle convection beneath the central Rio Grande rift imaged by P and S wave tomography. Journal of Geophysical Research, 109, 1-16.
  11. Holland, T.J.B. and Powell, R., 1990, An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O-Na2O-CaO- MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2. Journal of Metamorphic Geology, 8, 89-124. https://doi.org/10.1111/j.1525-1314.1990.tb00458.x
  12. Holloway, J.R. and Blank, J.G., 1994, Application of experimental results to COH species in natural melts. Reviews in Mineralogy and Geochemistry, 30, 187-230.
  13. Hudson, M.R. and Grauch, V.J.S., 2013, New Perspectives on Rio Grande Rift Basins: From Tectonics to Groundwater (Introduction). Geological Society of America Special Papers, 494, v-xii.
  14. Humphreys, E., Hessler, E., Dueker, K., Farmer, G.L., Erslev, E. and Atwater, T., 2003, How Laramide-Age Hydration of North American Lithosphere by the Farallon Slab Controlled Subsequent Activity in the Western United States. International Geology Review, 45, 575-595. https://doi.org/10.2747/0020-6814.45.7.575
  15. Humphreys, E., 2009, Relation of flat subduction to magmatism and deformation in the western United States. Geological Society of America Memoirs, 204, 85-98.
  16. Jung, H. and Karato, S., 2001, Water-induced fabric transitions in olivine. Science, 293, 1460-1463. https://doi.org/10.1126/science.1062235
  17. Jung, H., Katayama, I., Jiang, Z., Hiraga, I. and Karato, S., 2006, Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics, 421, 1-22. https://doi.org/10.1016/j.tecto.2006.02.011
  18. Jung, H., 2017, Crystal preferred orientations of olivine, orthopyroxene, serpentine, chlorite, and amphibole, and implications for seismic anisotropy in subduction zones: a review. Geosciences Journal, 21, 985-1011. https://doi.org/10.1007/s12303-017-0045-1
  19. Karato, S., Jung, H., Katayama, I. and Skemer, P., 2008, Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annual Review of Earth and Planetary Sciences, 36, 59-95. https://doi.org/10.1146/annurev.earth.36.031207.124120
  20. Katayama, I. and Karato, S., 2006, Effect of temperature on the B- to C-type olivine fabric transition and implication for flow pattern in subduction zones. Physics of the Earth and Planetary Interiors, 157, 33-45. https://doi.org/10.1016/j.pepi.2006.03.005
  21. Kil, Y. and Wendlandt, R.F., 2004, Pressure and temperature evolution of upper mantle under the Rio Grande rift. Contributions to Mineralogy and Petrology, 148, 265-280. https://doi.org/10.1007/s00410-004-0608-9
  22. Kil, Y. and Wendlandt, R.F., 2007, Depleted and enriched mantle processes under the Rio Grande rift: spinel peridotite xenoliths. Contributions to Mineralogy and Petrology, 154, 135-151. https://doi.org/10.1007/s00410-007-0183-y
  23. Lee, C.Ty A., 2005, Trace Element Evidence for Hydrous Metasomatism at the Base of the North American Lithosphere and Possible Association with Laramide Low-Angle Subduction. The Journal of Geology, 113, 673-685. https://doi.org/10.1086/449327
  24. Li, Z.X.A., Lee, C.T.A., Peslier, A.H., Lenardic, A. and Mackwell, S.J., 2008, Water contents in mantle xenoliths from the Colorado Plateau and vicinity: Implications for the mantle rheology and hydration-induced thinning of continental lithosphere. Journal of Geophysical Research, 113, B09210.
  25. Litasov, K.D., Shatskiy, A. and Ohtani, E., 2013, Earth's Mantle Melting in the Presence of C-O-H-Bearing Fluid. Physics and Chemistry of the Deep Earth. John Wiley & Sons, Ltd 38-65.
  26. Mercier, J.-C.C. and Nicolas, A., 1975, Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. Journal of Petrology, 16, 454-487. https://doi.org/10.1093/petrology/16.1.454
  27. O'Reilly, S.Y. and Griffin, W.L., 2000, Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos, 53, 217-232. https://doi.org/10.1016/S0024-4937(00)00026-8
  28. Park, M., Jung, H. and Kil, Y., 2014, Petrofabrics of olivine in a rift axis and rift shoulder and their implications for seismic anisotropy beneath the Rio Grande rift. Island Arc, 23, 299-311. https://doi.org/10.1111/iar.12089
  29. Park, M., 2017, Evolution of microstructures and fluid inclusions of naturally deformed peridotites: Implications for physico-chemical heterogeneity in the upper mantle. Ph. D. dissertation, Seoul National University, 117p.
  30. Park, M., Berkesi, M., Jung, H. and Kil, Y., 2017, Fluid infiltration in the lithospheric mantle beneath the Rio Grande Rift, USA: a fluid-inclusion study. European Journal of Mineralogy.
  31. Perry, F.V., Baldridge, W.S. and DePaolo, D.J., 1987, Role of asthenosphere and lithosphere in the genesis of Late Cenozoic basaltic rocks from the Rio Grande Rift and adjacent regions of the southwestern United States. Journal of Geophysical Research: Solid Earth, 92, 9193-9213. https://doi.org/10.1029/JB092iB09p09193
  32. Pollack, H.N. and Chapman, D.S., 1977, On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics, 38, 279-296. https://doi.org/10.1016/0040-1951(77)90215-3
  33. Roedder, E., 1984, Fluid inclusions. Reviews in Mineralogy, 12, 1-646. https://doi.org/10.2465/minerj.12.1
  34. Sato, K., Katsura, T. and Ito, E., 1997, Phase relations of natural phlogopite with and without enstatite up to 8 GPa: implication for mantle metasomatism. Earth and Planetary Science Letters, 146, 511-526. https://doi.org/10.1016/S0012-821X(96)00246-4
  35. Satsukawa, T., Michibayashi, K., Anthony, E.Y., Stern, R.J., Gao, S.S. and Liu, K.H., 2011, Seismic anisotropy of the uppermost mantle beneath the Rio Grande rift: Evidence from Kilbourne Hole peridotite xenoliths, New Mexico. Earth and Planetary Science Letters, 311, 172-181. https://doi.org/10.1016/j.epsl.2011.09.013
  36. Scambelluri, M. and Philippot, P., 2001, Deep fluids in subduction zones. Lithos, 55, 213-227. https://doi.org/10.1016/S0024-4937(00)00046-3
  37. Schiano, P., Clocchiatti, R. and Joron, J.L., 1992, Melt and fluid inclusions in basalts and xenoliths from Tahaa Island, Society archipelago: evidence for a metasomatized upper mantle. Earth and Planetary Science Letters, 111, 69-82. https://doi.org/10.1016/0012-821X(92)90170-Z
  38. Severinghaus, J. and Atwater, T., 1990, Cenozoic geometry and thermal state of the subducting slabs beneath western North America. Geological Society of America Memoirs, 176, 1-22. https://doi.org/10.1130/MEM176-p1
  39. Smith, D., Alexis Riter, J.C. and Mertzman, S.A., 1999, Water-rock interactions, orthopyroxene growth, and Sienrichment in the mantle: evidence in xenoliths from the Colorado Plateau, southwestern United States. Earth and Planetary Science Letters, 165, 45-54. https://doi.org/10.1016/S0012-821X(98)00251-9
  40. Taylor, W.R. and Green, D.H., 1988, Measurement of reduced peridotite-COH solidus and implications for redox melting of the mantle. Nature, 332, 349-352. https://doi.org/10.1038/332349a0
  41. Viti, C. and Frezzotti, M.L., 2000, Re-equilibration of glass and CO2 inclusions in xenolith olivine: A TEM study. American Mineralogist, 85, 1390-1396. https://doi.org/10.2138/am-2000-1007
  42. Zhang, S. and Karato, S.-I., 1995, Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375, 774-777. https://doi.org/10.1038/375774a0