DOI QR코드

DOI QR Code

알럼 응집을 이용한 광산폐기물 적치장 침출수 내 불소 제거 연구

A Study on the Removal of Fluorine from Leachate of Reclaimed Mine Waste Dump Site Using Alum Coagulation

  • 이상우 ((주)호성 HS환경기술연구소) ;
  • 이우춘 ((주)호성 HS환경기술연구소) ;
  • 김성희 ((주)호성 HS환경기술연구소) ;
  • 정상헌 ((주)호성 HS환경기술연구소) ;
  • 이보영 (한국광해광업공단 경인지사) ;
  • 이상환 (한국광해광업공단 경인지사) ;
  • 김순오 (경상대학교 자연과학대학 지질과학과 및 기초과학연구소)
  • Sang-Woo Lee (HS Environmental Technology Research Center, Hosung Inc.) ;
  • Woo-Chun Lee (HS Environmental Technology Research Center, Hosung Inc.) ;
  • Seong Hee Kim (HS Environmental Technology Research Center, Hosung Inc.) ;
  • Sang Heon Jeong (HS Environmental Technology Research Center, Hosung Inc.) ;
  • Bo Young Lee (Kyongin Branch, Korea Mine Rehabilitation and Mineral Resources) ;
  • Sang-Hwan Lee (Kyongin Branch, Korea Mine Rehabilitation and Mineral Resources) ;
  • Soon-Oh Kim (Department of Earth and Environmental Sciences and Research Institute of Natural Science (RINS), Gyeongsang National University)
  • 투고 : 2023.03.09
  • 심사 : 2023.03.20
  • 발행 : 2023.03.31

초록

본 연구에서는 S광산의 광산폐기물 적치장 침출수에 함유된 불소의 처리를 위해(1) Ca계 물질을 이용한 공침법; (2) 활성탄과 비산회를 이용한 흡착법; (3) 알럼을 이용한 응집침전법 등을 이용한 불소(초기 농도 9.5 mg/L) 제거 실험을 수행하였다. Ca계 물질을 이용한 공침법의 경우 최대 65.6%, 활성탄 흡착법 27.9%, 비산회 흡착법 71.5%, 알럼을 이용한 응집침전법은 최대 96.6%의 불소 제거 효율을 보였다. 또한 불소의 제거에 있어 높은 제거 효율을 보인 알럼을 이용하여 모의 침출수를 대상으로 실험실 내 반응조에서 수행한 연속 처리 공정 가능성 검토결과, 저농도(6.4 mg/L), 고농도(15.7 mg/L) 모의 침출수를 불소의 국내 청정 지역 배출수 허용 기준인 3 mg/L이하로 처리하는 것이 가능한 것으로 나타났다. 또한 벤치 규모 반응조 운영을 통한 현장 불소 제거 실험 결과, 적정한 운영 및 관리를 하는 경우 불소의 방류수 수질기준을 만족시킬 수 있음을 확인하였다.

This study was conducted to remove fluorine (F) (initial concentration of 9.5 mg/L) from leachate of reclaimed mine waste dump site via different methods: (1) co-precipitation using Ca-based materials; (2) adsorption using activated carbon and fly ash; and (3) coagulation and sedimentation using alum. The F removal efficiencies of each case were estimated as 65.6% (Ca co-precipitation), 27.9% (adsorption of activated carbon), 71.5% (adsorption of fly ash), and 96.6% (alum coagulation and sedimentation). In addition, the applicability of the continuous treatment process using alum coagulation was evaluated by lab-scale experiments using simulated mine drainage containing F of lower (6.4 mg/L) and higher (15.7 mg/L) concentrations, and it was confirmed that the treatment of both cases met the domestic standard (below 3 mg/L) for discharged water in clean areas. Furthermore, the results of bench-scale field tests indicated that the water quality standard of discharged water could be satisfied with the proper operation and management of the process.

키워드

과제정보

본 연구는 한국광해광업공단의 지원을 받아 수행되었습니다.

참고문헌

  1. Ahmad, T., Ahmad, K., Ahad, A. and Alam, M., 2016, Characterization of water treatment sludge and its reuse as coagulant. J. Environ. Manage., 182, 606-611. https://doi.org/10.1016/j.jenvman.2016.08.010
  2. Amor, Z., Bariou, B., Mameri, N., Taky, M., Nicolas, S. and Elmidaoui, A., 2001, Fluoride removal from brackish water by electrodialysis. Desalination, 133(3), 215-223. https://doi.org/10.1016/S0011-9164(01)00102-3
  3. Cheng, L.S., 1985, Electrochemical method to remove fluorine from drinking water, Water Supply, 3, 177-186.
  4. Gazea, B., Adam, K. and Kontopoulos, A., 1996, A review of passive systems for the treatment of acid mine drainge. Minerals Engineering, 9(1), 23-42. https://doi.org/10.1016/0892-6875(95)00129-8
  5. Ghorai, S. and Pant, K.K., 2005, Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Sep. Purif. Technol., 42(3), 265-271. https://doi.org/10.1016/j.seppur.2004.09.001
  6. He, J., Yang, Y., Wu, Z., Xie, C., Zhang, K., Kong, L. and Liu, J., 2020, Review of fluoride removal from water environment by adsorption. J. Environ. Chem. Eng., 8, 104516. doi: 10.1016/j.jece.2020.104516.
  7. Hu, K. and Dickson, J.M., 2006, Nanofiltration membrane performance on fluoride removal from water. J. Membr. Sci., 279(1-2), 529-538. https://doi.org/10.1016/j.memsci.2005.12.047
  8. Jung, S.M., Ju, H.J. and Cho, J.Y., 2013, Analyzing the priority of promoting sustainability in support of the social welfare agency sponsors based on AHP. Korean J. Local Government & Administration Studies, 27, 205-222. https://doi.org/10.18398/kjlgas.2013.27.1.205
  9. Jung, W.S., Ji, M.K., Lee, S.H., Eva. K., Amit. B., Kim, S.J. and Jeon, B.H., 2008, Adsorption of fluoride onto granular ferric hydroxide. J. Korean. Soc. Energy. Resource. Eng., 45(5), 441-447.
  10. Kim, J.Y., Choi, U.K., Baek, S.H., Choi, H.B. and Lee, J.H., 2016, A study on chemical compositions of sediment and surface water in Nakdong river for tracing contaminants from mining activities. J. Korean Earth Science Society, 37, 211-217. https://doi.org/10.5467/JKESS.2016.37.4.211
  11. Kim, J.Y., Jang, Y.D., Kim, Y.H. and Kim, J.J., 2014, Characteristics of precipitates and geochemistry of mine and leachate water in Janggun mine. J. Mineralogical Soc. Korea, 27, 125-134. https://doi.org/10.9727/jmsk.2014.27.3.125
  12. Kim, S.H., Kim, K.Y., Lim, C.S. Lee, S.I., 2009, Fluoride removal considering struvite crystallization reaction. KSWST J. Wat. Treat., 17(3), 141-150.
  13. Kim, S.Y., Kim, J.H., Kim, H.J. and Cho, Y.S., 2005, A study on the removal of low-concentration fluoride-ion by modified alumina. J. Korean. Soc. Environ. Eng., 27(3), 247-252.
  14. Kwon, O.H., Park, H.S., Lee, J.S. and Ji, W.H., 2020, A field study on the application of pilot-scale vertical flow reactor system into the removal of Fe, As and Mn in mine drainage. Econ. Environ. Geol., 53(6), 695-701.
  15. Lee, J.H. and Kim S.J., 2021, A study of fluoride adsorption in aqueous solution using iron sludge based adsorbent at mine drainage treatment facility. Econ. Environ. Geol., 54(6), 709-716. https://doi.org/10.9719/EEG.2021.54.6.709
  16. Lee, M.J., Park, S.J., Kim C.G. and Yoon, T.I., 2002, Defluoridation of wastewater using by calcium chloride and alum. J. Korean. Soc. Environ. Eng., 24(12), 2151-2161.
  17. Malhbtra, S., Kulkarni, D.N. and Pande, S.P., 1997, Effectiveness of poly aluminum chloride (PAC) vis-a-vis alum in the removal of fluorides and heavy metals. J. Environ. Sci. Health A, 32(9-10), 2563-2574. https://doi.org/10.1080/10934529709376703
  18. Mameri, N., Ueddou, A.R., Lounici, H., Belhocine, D., Grib, H. and Bariou, B., 1998, Defluoridation of septentrional sahara water of north Africa by electrocoagulation process using bipolar aluminium electrodes. Water Res., 32(5), 1604-1612. https://doi.org/10.1016/S0043-1354(97)00357-6
  19. Ministry of Environment, 2020, Emission Acceptance Criteria. http://www.law.go.kr/lsInfoP.do?lsiSeq=176703#J34:0.
  20. Ming, L., Sunrui, Y., Zhangiun, H., Bina, Y., Wel, L., Liu, P. and Kefichero, F., 1983, Elimnation of excess fluoride in potable water with conservation by electrolysis using aluminium anode, Fluoride, 20(20), 54-63.
  21. MIRECO (Korea Mine Reclamation Corporation), 2018, Mine pollution statistical yearbook, MIRECO report, Wonju, Korea, 147p.
  22. Park, C.K., Kim, J.W., Jung, M.C., Park, H.S., Kim, D.K. and Oh, Y.S., 2018, Current occurrence and heavy metal contamination assessment of seepage from Mine waste dumping sites in Korea. J. Korean Soc. Mineral and Energy Resources Engineers, 55, 588-595. https://doi.org/10.32390/ksmer.2018.55.6.588
  23. Park, C.K, Yoon, K.W., Kim, J.W., Jung, M.C., Lee, J.S., Ji, W.H., and Lee, J.H., 2020, Priority assessment of leachate management of reclaimed mine waste dump sites, Econ. Environ. Geol., 53(6), 771-779.
  24. Ramos, R.L., Ovalle-Turrubiartes, J. and Sanchez-Castillo, M.A., 1999, Adsorption of fluoride from aqueous solution on aluminumim-pregnated carbon. Carbon, 37(4), 609-617. https://doi.org/10.1016/S0008-6223(98)00231-0
  25. Saha, S., 1993, Treatment of aqueous effluent for fluoride removal. Water Res., 27(8), 1347-1350. https://doi.org/10.1016/0043-1354(93)90222-4
  26. Sehn, P., 2008, Fluoride removal with extra low energy reverse osmosis membranes: three years of large scale field experience in Finland. Desalination, 223(1-3), 73-84. https://doi.org/10.1016/j.desal.2007.02.077
  27. Sollo, F,W., Larson, T.E. and Mueller H.F., 1978, Fluoride removal from potable water supplies. UILU-WRC-78-0136 Research Reprot No. 136.
  28. Srimurali, M., Pragathi, A. and Karthikeyan, J., 1998, A study on removal of fluorides from drinking water by adsorption onto low-cost materials. Environ. Pollut., 99(2), 285-289. https://doi.org/10.1016/S0269-7491(97)00129-2
  29. Sujana, M.R. Thakur, R.S. and Rao, S.B., 1998, Removal of fluoride from aqueous solution by using alum sludge. J. Colloid Interace Sci., 206(1) 94-101. https://doi.org/10.1006/jcis.1998.5611
  30. Vaaramaa, K. and Lehto, J., 2003, Removal of metals and anions from drinking water by ion exchange. Desalination, 155(2), 157-170. https://doi.org/10.1016/S0011-9164(03)00293-5
  31. WHO (World Health Organization), 2017, Guidelines for drinking-water quality, 4th Edition Incorporating the 1st addendum.
  32. Yoon, K.W., Jung, M.C., Kim, J.W., Jeon, S.W., Han, S.H., Lee, J.S., Ji, W.H. and Kwon, O.H., 2020, Environmental assessment of water quality affected by mine drainage from tailings dam in the Sambo Pb-Zn mine. J. Korean Soc. Mineral and Energy Resources Engineers, 57, 12-23. https://doi.org/10.32390/ksmer.2020.57.1.012
  33. Ziemkiewicz, P.F., Skousen, J.G. and Simmons, J., 2003, Long-term performance of passive acid mine drainage treatment systems. Mine Water Environ., 22, 118-129. https://doi.org/10.1007/s10230-003-0012-0