DOI QR코드

DOI QR Code

Cs Fixation and Leaching Characteristics of High Temperature-Treated Todorokite

고온 처리된 토도로카이트의 Cs 고정 및 용출 특성

  • Seongyeop Kim (School of Earth System Sciences, Kyungpook National University) ;
  • Yeongkyoo Kim (School of Earth System Sciences, Kyungpook National University) ;
  • Changyun Park (School of Earth System Sciences, Kyungpook National University)
  • 김성엽 (경북대학교 지구시스템과학부) ;
  • 김영규 (경북대학교 지구시스템과학부) ;
  • 박창윤 (경북대학교 지구시스템과학부)
  • Received : 2023.03.10
  • Accepted : 2023.03.20
  • Published : 2023.03.31

Abstract

Todorokite is a manganese oxide mineral containing Mg2+ in a tunnel structure in which MnO6 octahedra share corners. In order to investigate the suitability and efficiency of high temperature-treated todorokite as a material for adsorption and fixation of Cs, Cs was ion exchanged and the amount of leached Cs from todorokite was measured. The todorokite used in this study was synthesized by transforming Na-birnessite to Mg-buserite and used as a precursor. After high temperature treatment, Cs exchanged todorokite changed to birnessite and hausmannite as the temperature increased. The amount of leached Cs was investigated for Cs exchanged todorokite which was reacted with distilled water and 1 M NaCl solution at different reaction times. In general, for the samples reacted with 1 M NaCl solution, the fixation of Cs was quite effective, although the amount of leached Cs was greater due to the ion exchange reaction with Na. As the treatment temperature increased, the amount of leached Cs increased and then decreased again, which was related to the mineral phases formed at each temperature. As birnessite was formed, the amount of leached Cs increased, but as birnessite decreased, that decreased again. As the mineral phase changed to hausemanite, the amount of Cs decreased rapidly. The results of our study show that Cs exchanged todorokite can be used as a material that effectively fixes Cs and prevents its diffusion by high temperature treatment.

토도로카이트(todorokite)는 MnO6 팔면체가 모서리를 공유하는 터널구조에 Mg2+가 포함된 망간산화광물로, 이의 Cs 흡착 및 고정물질로의 적합성과 효율성을 알아보기 위해 합성된 토도로카이트에 Cs을 이온교환시킨 후 고온 처리 및 용출 실험을 통해 Cs의 용출양을 측정하였다. 본 연구에 사용된 토도로카이트는 Na-버네사이트(birnessite)를 Mg-부저라이트(buserite)상태로 조성 후 이를 전구물질로 이용하여 합성하였다. Cs을 이온교환시킨 토도로카이트를 고온 처리한 결과, 온도가 증가함에 따라 버네사이트, 하우스마나이트(hausmannite)로 광물상의 변화가 나타났다. Cs이 이온교환된 토도로카이트는 증류수와 1 M NaCl 용액과 반응 시간을 달리하여 용출량을 측정하였는데 용출량 변화는 온도구간에 따른 광물상 변화, 반응시간, 반응 용액의 종류에 따라 상이한 용출량을 보였다. 전반적으로 1 M NaCl과 반응한 시료에서 Na와의 이온교환 반응에 의하여 용출이 더 컸으나 어느정도 Cs의 고정 효과가 있는 것으로 나타났다. 처리 온도가 높을수록 Cs의 용출량은 증가하다 다시 감소하였는데 이는 각 온도에서 형성된 광물상과 밀접한 관련이 있으며 버네사이트가 형성되면서 용출량은 증가하나 버네사이트가 감소함에 따라 용출량은 다시 감소하고 고온에서 하우스마나이트로 상변화되면서 Cs의 용출량은 급격히 줄어들었다. 이러한 연구 결과는 Cs을 이온교환시킨 토도로카이트의 고온 처리를 통하여 Cs을 효과적으로 고정하고, 확산을 막는 물질로 활용할 수 있음을 보여준다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2022R1A2C1003884).

References

  1. Al-Attar, L. and Dyer, A., 2007, Ion exchange in birnessite. Land Contamination and Reclamation, 15, 427-436. https://doi.org/10.2462/09670513.878
  2. Baek, W., Ha, S., Hong, S., Kim, S. and Kim, Y., 2018, Cation exchange of cesium and cation selectivity of natural zeolites: chabazite, stilbite, and heulandite. Microporous and Mesoporous Materials, 264, 159-166. https://doi.org/10.1016/j.micromeso.2018.01.025
  3. Belousov, P., Semenkova, A., Egorova, T., Romanchuk, A., Zakusin, S., Dorzhieva, O., Tyupina, E., Izosimova, Y., Tolpeshta, I. and Chernov, M., 2019, Cesium sorption and desorption on glauconite, bentonite, zeolite, and diatomite. Minerals, 9, 625.
  4. Beresford, N., Fesenko, S., Konoplev, A., Skuterud, L., Smith, J. and Voigt, G., 2016, Thirty years after the Chernobyl accident: What lessons have we learnt? Journal of Environmental Radioactivity, 157, 77-89. https://doi.org/10.1016/j.jenvrad.2016.02.003
  5. Bish, D.L. and Post, J.E., 1989, Thermal behavior of complex, tunnel-structure manganese oxides. American Mineralogist, 74, 177-186.
  6. Bostick, B.C., Vairavamurthy, M.A., Karthikeyan, K. and Chorover, J., 2002, Cesium adsorption on clay minerals: An EXAFS spectroscopic investigation. Environmental Science and Technology, 36, 2670-2676. https://doi.org/10.1021/es0156892
  7. Bricker, O., 1965, Some stability relations in the system MnO2-H2O at 25 and one atmosphere total pressure. American Mineralogist: Journal of Earth and Planetary Materials, 50, 1296-1354.
  8. Chitrakar, R., Makita, Y. and Sonoda, A., 2014, Cesium adsorption by synthetic todorokite-type manganese oxides. Bulletin of the Chemical Society of Japan, 87, 733-739. https://doi.org/10.1246/bcsj.20140017
  9. Duncan, M., Leroux, F., Corbett, J. and Nazar, L., 1998, Todorokite as a Li Insertion Cathode: Comparison of a Large Tunnel Framework "" Structure with Its Related Layered Structures. Journal of the Electrochemical Society, 145, 3746.
  10. Dyer, A., Pillinger, M., Newton, J., Harjula, R., Moller, T. and Amin, S., 2000, Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides. Chemistry of Materials, 12, 3798-3804.  https://doi.org/10.1021/cm001142v
  11. Feng, Q., Kanoh, H., Miyai, Y. and Ooi, K., 1995, Metal ion extraction/insertion reactions with todorokite-type manganese oxide in the aqueous phase. Chemistry of Materials, 7, 1722-1727. https://doi.org/10.1021/cm00057a023
  12. Feng, X., Liu, F., Tan, W., Liu, X. and Hu, H., 2004, Synthesis of todorokite by refluxing process and its primary characteristics. Science in China Series D Earth Sciences-English Edition, 47, 760-768. https://doi.org/10.1360/03yd0511
  13. Goldberg, E.D., 1954, Marine geochemistry 1. Chemical scavengers of the sea. The Journal of Geology, 62, 249-265.  https://doi.org/10.1086/626161
  14. Gu, B., Wang, L.-M. and Ewing, R., 2000, The effect of amorphization on the Cs ion exchange and retention capacity of zeolite-NaY. Journal of Nuclear Materials, 278, 64-72. https://doi.org/10.1016/S0022-3115(99)00224-X
  15. Islam, M.A., Morton, D.W., Johnson, B.B., Mainali, B. and Angove, M.J., 2018, Manganese oxides and their application to metal ion and contaminant removal from wastewater. Journal of Water Process Engineering, 26, 264-280. https://doi.org/10.1016/j.jwpe.2018.10.018
  16. Jenne, E.A., 1968, Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides. Trace Inorganics in Water, Advances in Chemistry Series, 73, 337-387. https://doi.org/10.1021/ba-1968-0073.ch021
  17. Kim, H., Kim, J., Hyun, S.P., and Kwon, K.D., 2022, Toward a mechanistic understanding of cesium adsorption to todorokite: A molecular dynamics simulation study. Journal of Hazardous Materials, 436, 129250.
  18. Kim, Y., Cygan, R.T. and Kirkpatrick, R.J., 1996, 133Cs NMR and XPS investigation of cesium adsorbed on clay minerals and related phases. Geochimica et Cosmochimica Acta, 60, 1041-1052. https://doi.org/10.1016/0016-7037(95)00452-1
  19. Kim, Y. and Kirkpatrick, R.J., 1997, 23Na and 133Cs NMR study of cation adsorption on mineral surfaces: Local environments, dynamics, and effects of mixed cations. Geochimica et Cosmochimica Acta, 61, 5199-5208. https://doi.org/10.1016/S0016-7037(97)00347-5
  20. Kovalchuk, I., Kovalchuk, O., Arkhipov, A. and Hohn, B., 1998, Transgenic plants are sensitive bioindicators of nuclear pollution caused by the Chernobyl accident. Nature Biotechnology, 16, 1054-1059. https://doi.org/10.1038/3505
  21. Kwon, S., Kim, C., Han, E., Lee, H., Cho, H.S. and Choi, M., 2021, Relationship between zeolite structure and capture capability for radioactive cesium and strontium. Journal of Hazardous Materials, 408, 124419.
  22. Lee, H.Y., Kim, H.S., Jeong, H.-K., Park, M., Chung, D.-Y., Lee, K.-Y., Lee, E.-H. and Lim, W.T., 2017, Selective removal of radioactive cesium from nuclear waste by zeolites: on the origin of cesium selectivity revealed by systematic crystallographic studies. The Journal of Physical Chemistry C, 121, 10594-10608. https://doi.org/10.1021/acs.jpcc.7b02432
  23. Liguori, B., Caputo, D., Iucolano, F., Aprea, P. and De Gennaro, B., 2013, Entrapping of Cs and Sr in heat-treated zeolite matrices. Journal of Nuclear Materials, 435, 196-201. https://doi.org/10.1016/j.jnucmat.2012.12.043
  24. Ma, Y., Luo, J. and Suib, S.L., 1999, Syntheses of birnessites using alcohols as reducing reagents: Effects of synthesis parameters on the formation of birnessites. Chemistry of Materials, 11, 1972-1979. https://doi.org/10.1021/cm980399e
  25. Manceau, A., Kersten, M., Marcus, M.A., Geoffroy, N. and Granina, L., 2007, Ba and Ni speciation in a nodule of binary Mn oxide phase composition from Lake Baikal. Geochimica et Cosmochimica Acta, 71, 1967-1981. https://doi.org/10.1016/j.gca.2007.02.007
  26. Min, S. and Kim, Y., 2020, Physicochemical characteristics of the birnessite and todorokite synthesized using various methods. Minerals, 10, 884.
  27. Min, S. and Kim, Y., 2022, Adsorption characteristics of Cs and cation selectivity of todorokite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, 129652.
  28. Post, J.E. and Bish, D.L., 1988, Rietveld refinement of the todorokite structure. American Mineralogist, 73, 861-869.
  29. Post, J.E., Heaney, P.J. and Hanson, J., 2003, Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite. American Mineralogist, 88, 142-150. https://doi.org/10.2138/am-2003-0117
  30. Shen, Y., Zerger, R., DeGuzman, R., Suib, S., McCurdy, L., Potter, D. and O'young, C., 1993, Manganese oxide octahedral molecular sieves: preparation, characterization, and applications. Science, 260, 511-515. https://doi.org/10.1126/science.260.5107.511
  31. Takahashi, J., Tamura, K., Suda, T., Matsumura, R. and Onda, Y., 2015, Vertical distribution and temporal changes of 137Cs in soil profiles under various land uses after the Fukushima Dai-ichi Nuclear Power Plant accident. Journal of Environmental Radioactivity, 139, 351-361. https://doi.org/10.1016/j.jenvrad.2014.07.004
  32. Tazoe, H., Hosoda, M., Sorimachi, A., Nakata, A., Yoshida, M., Tokonami, S. and Yamada, M., 2012, Radioactive pollution from Fukushima Daiichi nuclear power plant in the terrestrial environment. Radiation Protection Dosimetry, 152, 198-203. https://doi.org/10.1093/rpd/ncs222
  33. Toner, B., Manceau, A., Webb, S.M. and Sposito, G., 2006, Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. Geochimica et Cosmochimica Acta, 70, 27-43. https://doi.org/10.1016/j.gca.2005.08.029
  34. Turner, S. and Buseck, P.R., 1979, Manganese oxide tunnel structures and their intergrowths. Science, 203, 456-458. https://doi.org/10.1126/science.203.4379.456
  35. Turner, S. and Buseck, P.R., 1981, Todorokites: A new family of naturally occurring manganese oxides. Science, 212, 1024-1027. https://doi.org/10.1126/science.212.4498.1024
  36. Turner, S., Siegel, M.D. and Buseck, P.R., 1982, Structural features of todorokite intergrowths in manganese nodules. Nature, 296, 841-842. https://doi.org/10.1038/296841a0
  37. Vileno, E., Zhou, H., Zhang, Q., Suib, S.L., Corbin, D.R. and Koch, T.A., 1999, Synthetic todorokite produced by microwave heating: an active oxidation catalyst. Journal of Catalysis, 187, 285-297. https://doi.org/10.1006/jcat.1999.2639
  38. Wang, J., Baskaran, M., Cukrov, N. and Du, J., 2022, Geochemical mobility of 137Cs in marine environments based on laboratory and field studies. Chemical Geology, 614, 121179.
  39. Young, L.B. and Harvey, H.H., 1992, The relative importance of manganese and iron oxides and organic matter in the sorption of trace metals by surficial lake sediments. Geochimica et Cosmochimica Acta, 56, 1175-1186. https://doi.org/10.1016/0016-7037(92)90055-N
  40. Yu, Q., Ohnuki, T., Kozai, N., Sakamoto, F., Tanaka, K., and Sasaki, K., 2017, Quantitative analysis of radiocesium retention onto birnessite and todorokite. Chemical Geology, 470, 141-151. https://doi.org/10.1016/j.chemgeo.2017.09.008