DOI QR코드

DOI QR Code

Changes in Cobalt Adsorption Properties of Montmorillonite by Dehydration

탈수 작용에 따른 몬모릴로나이트의 코발트 흡착 특성 변화

  • Yeongjun Jang (School of Earth System Sciences, Kyungpook National University) ;
  • Yeongkyoo Kim (School of Earth System Sciences, Kyungpook National University)
  • 장영준 (경북대학교 지구시스템과학부) ;
  • 김영규 (경북대학교 지구시스템과학부)
  • Received : 2023.06.05
  • Accepted : 2023.06.14
  • Published : 2023.06.30

Abstract

Cobalt can be released into the natural environment as industrial waste from the alloying industry and as acid mine drainage, and it is also a radionuclide (60Co) that constitutes high-level radioactive waste. Smectite is a mineral that can be useful for adsorption and isolation of this element. In this study, Cheto-type montmorillonite (Cheto-MM), which is the source clays of The Clay Mineral Society (CMS) and already well-characterized, was used. The effect of the adsorption site affected by the presence of interlayer water on the adsorption of cobalt before and after dehydration by heating was evaluated and the adsorption mechanism of cobalt on Cheto-MM was studied by applying adsorption kinetics and adsorption isotherm models. The results showed that the adsorption characteristics changed with dehydration and subsequent shrinkage, and cobalt was found to be adsorbed at the edge of Cheto-MM for about 38% and adsorbed at the interlayer site for about 62%, suggesting that the cobalt adsorption of Cheto-MM is significantly influenced by the interlayer. By applying the adsorption kinetic models, the cobalt adsorption kinetics of Cheto-MM is explained by a pseudo-second-order model, and the concentration-dependent adsorption was best described by the Langmuir isotherm adsorption model. This study provides basic knowledge on the adsorption characteristic of cobalt on montmorillonite with different adsorption sites and is expected to be useful in predicting the adsorption behavior of smectite in high-level radioactive waste disposal sites in the future.

코발트는 합금산업에서 발생되는 산업 폐기물과 산성광산배수로 자연에 유입될 수 있으며 또한 고준위 방사성 폐기물을 구성하는 방사성 핵종(60Co)기도 하다. 스멕타이트는 이들을 흡착 격리하는데 유용하게 사용될 수 있는 광물이다. 본 연구에서는 기존에 특성이 잘 알려진 스멕타이트 중 The Clay Mineral Society (CMS)의 source clay인 Cheto-type montmorillonite (Cheto-MM)를 사용하여 가열에 의한 탈수 전후 광물의 층간수 존재 여부에 따른 흡착 자리가 코발트 흡착에 미치는 영향을 평가하고, 흡착 속도 및 등온흡착식 모델을 적용하여 Cheto-MM의 코발트에 대한 흡착 기작을 연구하였다. 본 연구 결과 탈수 및 이에 따른 층간 수축에 의해 흡착 특성이 달라지는 것을 확인할 수 있었으며, 코발트는 Cheto-MM의 층 모서리 자리에서의 흡착이 약 38%, 층간 내부에서의 흡착이 약 62%를 차지하는 것으로 확인되었고 Cheto-MM의 코발트 흡착은 층간 내부에 의한 영향이 큰 것으로 판단된다. 이러한 흡착에 있어 흡착 속도 모델을 적용한 결과, Cheto-MM의 코발트 흡착 속도는 pseudo-second-order 모델로 설명되며 농도에 따른 흡착은 Langmuir 등온흡착 모델로 가장 잘 설명되었다. 본 연구는 몬모릴로나이트의 흡착 자리에 따른 코발트의 흡착 양상에 대한 기본지식을 제공하고, 추후 고준위 방사성 폐기물 처분장에서의 스멕타이트의 흡착 거동을 예측하는데 유용하게 사용될 수 있을 것으로 생각된다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1A2C1003884).

References

  1. Anguile, J.J., Mbadcam, J.K., Ndaghu, D.D.a., Dongmo, S., 2013, Effect of solution parameters on the adsorption of cobalt (II) ions on smectite from Cameroon: equilibrium studies. Journal of Academia and Industrial Research, 2, 210-215.
  2. Barceloux, D.G., Barceloux, D., 1999, Cobalt. Journal of Toxicology: Clinical Toxicology, 37, 201-216. https://doi.org/10.1081/CLT-100102420
  3. Borden, D., Giese, R., 2001, Baseline studies of the clay minerals society source clays: cation exchange capacity measurements by the ammonia-electrode method. Clays and Clay Minerals, 49, 444-445. https://doi.org/10.1346/CCMN.2001.0490510
  4. Bosco, S.D., Jimenez, R., Vignado, C., Fontana, J., Geraldo, B., Figueiredo, F., Mandelli, D., Carvalho, W., 2006, Removal of Mn (II) and Cd (II) from wastewaters by natural and modified clays. Adsorption, 12, 133-146. https://doi.org/10.1007/s10450-006-0375-1
  5. Cheon, K.-H., Choi, J.-H., Shin, W.-S., Choi, S.-J., 2014, Adsorption characteristics of cobalt, strontium, and cesium on natural soil and kaolin. Journal of Environmental Science International, 23, 1609-1618. https://doi.org/10.5322/JESI.2014.23.9.1609
  6. Chipera, S.J., Bish, D.L., 2001, Baseline studies of the clay minerals society source clays: powder X-ray diffraction analyses. Clays and Clay Minerals, 49, 398-409. https://doi.org/10.1346/CCMN.2001.0490507
  7. Czarnek, K., Terpilowska, S., Siwicki, A.K., 2015, Selected aspects of the action of cobalt ions in the human body. Central European Journal of Immunology, 40, 236-242. https://doi.org/10.5114/ceji.2015.52837
  8. Czimerova, A., Bujdak, J., Dohrmann, R., 2006, Traditional and novel methods for estimating the layer charge of smectites. Applied Clay Science, 34, 2-13. https://doi.org/10.1016/j.clay.2006.02.008
  9. de Pablo, L., Chavez, M.L., Abatal, M., 2011, Adsorption of heavy metals in acid to alkaline environments by montmorillonite and Ca-montmorillonite. Chemical Engineering Journal, 171, 1276-1286. https://doi.org/10.1016/j.cej.2011.05.055
  10. Egozy, Y., 1980, Adsorption of cadmium and cobalt on montmorillonite as a function of solution composition. Clays and Clay Minerals, 28, 311-318. https://doi.org/10.1346/CCMN.1980.0280410
  11. Garcia-Padilla, A., Moreno-Sader, K.A., Realpe, A., Acevedo-Morantes, M., Soares, J.B.P., 2020, Evaluation of adsorption capacities of nanocomposites prepared from bean starch and montmorillonite. Sustainable Chemistry and Pharmacy, 17.
  12. Gillman, G., Sumpter, E., 1986, Modification to the compulsive exchange method for measuring exchange characteristics of soils. Soil Research, 24, 61-66. https://doi.org/10.1071/SR9860061
  13. Guggenheim, S., Van Groos, A.K., 2001, Baseline studies of the clay minerals society source clays: thermal analysis. Clays and Clay Minerals, 49, 433-443. https://doi.org/10.1346/CCMN.2001.0490509
  14. Hawkins, M., 2001, Why we need cobalt. Applied Earth Science, 110, 66-70. https://doi.org/10.1179/aes.2001.110.2.66
  15. Hizal, J., Yilmazoglu, M., 2021, Montmorillonite Clay Composite for Heavy Metal Removal from Water. In Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water (eds. Inanmuddin, Ahamed, M., Lichtfouse, E., Asiri, A.), Environmental Chemistry for a Sustainable World, vol 49, Springer, 93-112.
  16. Ho, Y.S., McKay, G., 1999, Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  17. Ho, Y.S., McKay, G., 2000, The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water research, 34, 735-742. https://doi.org/10.1016/S0043-1354(99)00232-8
  18. Ijagbemi, C.O., Baek, M.-H., Kim, D.-S., 2009, Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. Journal of Hazardous Materials, 166, 538-546. https://doi.org/10.1016/j.jhazmat.2008.11.085
  19. Kagambega, N., Sawadogo, S., Bamba, O., Zombre, P., Galvez, R., 2014, Acid mine drainage and heavy metals contamination of surface water and soil in southwest Burkina Faso-West Africa. International Journal of Multidisciplinary Academic Research, 2, 9-19.
  20. Lagergren, S.K., 1898, About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24, 1-39.
  21. Lee, I.-G., Choi, S.-H., 2008, Characteristics of elements extraction in waste rocks on the abandoned Jangpoong Cn mine. Economic and Environmental Geology, 41, 695-708.
  22. Lison, D., 2022, Chapter 9 - Cobalt, In Handbook on the Toxicology of Metals (5th edition) (eds. Nordberg, G. F., and Costa, M.) Academic Press, 221-242.
  23. Liu, L., Zhang, C., Jiang, W., Li, X., Dai, Y., Jia, H., 2021, Understanding the sorption behaviors of heavy metal ions in the interlayer and nanopore of montmorillonite: A molecular dynamics study. Journal of Hazardous Materials, 416, 125976.
  24. Moon, J.-H., Kim, T.-J., Choi, C.-H., Kim, C.-G., 2006, Adsorption characteristics of heavy metals on clay minerals. Journal of Korean Society of Environmental Engineers, 28, 704-712.
  25. Onodera, Y., Iwasaki, T., Ebina, T., Hayashi, H., Torii, K., Chatterjee, A., Mimura, H., 1998, Effect of layer charge on fixation of cesium ions in smectites. Journal of Contaminant Hydrology, 35, 131-140. https://doi.org/10.1016/S0169-7722(98)00121-1
  26. Papelis, C., Hayes, K.F., 1996, Distinguishing between inter-layer and external sorption sites of clay minerals using X-ray absorption spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107, 89-96. https://doi.org/10.1016/0927-7757(95)03370-X
  27. Paustenbach, D.J., Tvermoes, B.E., Unice, K.M., Finley, B.L., Kerger, B.D., 2013, A review of the health hazards posed by cobalt. Critical Reviews in Toxicology, 43, 316-362. https://doi.org/10.3109/10408444.2013.779633
  28. Persson, I., 2010, Hydrated metal ions in aqueous solution: How regular are their structures? Pure and Applied Chemistry, 82, 1901-1917. https://doi.org/10.1351/PAC-CON-09-10-22
  29. Sen Gupta, S., Bhattacharyya, K.G., 2008, Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Journal of Environmental Management, 87, 46-58. https://doi.org/10.1016/j.jenvman.2007.01.048
  30. Slack, J.F., Kimball, B.E., Shedd, K.B., 2017, Cobalt. US Geological Survey.
  31. Subramanyam, B., Das, A., 2009, Study of the adsorption of phenol by two soils based on kinetic and isotherm modeling analyses. Desalination, 249, 914-921. https://doi.org/10.1016/j.desal.2009.05.020
  32. Uddin, M.K., 2017, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438-462. https://doi.org/10.1016/j.cej.2016.09.029
  33. Velde, B., 1995, Composition and Mineralogy of Clay Minerals. In Origin and mineralogy of clays (eds. Velde, B.), Springer, Berlin, 8-42.
  34. Wang, S., 2006, Cobalt-its recovery, recycling, and application. JOM, 58, 47-50.  https://doi.org/10.1007/s11837-006-0201-y