Browse > Article
http://dx.doi.org/10.9719/EEG.2022.55.6.689

Genetic Environments at the Ssangjeon Tungsten-bearing Hydrothermal Vein Deposit  

Sunjin Lee (Department of Earth and Environmental Sciences, Chungbuk National University)
Sang-Hoon Choi (Department of Earth and Environmental Sciences, Chungbuk National University)
Publication Information
Economic and Environmental Geology / v.55, no.6, 2022 , pp. 689-699 More about this Journal
Abstract
The Ssangjeon tungsten deposit is located within the Yeongnam Massif. Within the area a number of hydrothermal quartz veins were formed by narrow open-space filling of parallel and subparallel fractures in the metasedimentary rocks as Wonnam formation, Buncheon granite gneiss, amphibolite and/or pegmatite. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz vein; stage II, barren quartz vein) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of arsenopyrite with pyrite; middle, characterized by introduction of wolframite and scheelite with Ti-Fe-bearing oxides and base-metal sulfides; late, marked by Bi-sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥370℃) and later lower temperatures (≈170℃) from H2O-CO2-NaCl fluids with salinities between 18.5 to 0.2 equiv. wt. % NaCl of Ssangjeon hydrothermal system. The relationship between salinity and homogenization temperature indicates a complex history of boiling, fluid unmixing (CO2 effervescence), cooling and dilution via influx of cooler, more dilute meteoric waters over the temperature range ≥370℃ to ≈170℃. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Ssangjeon hydrothermal system with increasing paragenetic time.
Keywords
Ssangjeon; tungsten; hydrothermal fluid; vein deposit; $H_2O-CO_2-NaCl$ system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barton, P.B., Jr. and Toulmin, P.III. (1964) The electrum-tarnish method for the determination of the fugacity of sulfur in laboratory sulfide systems. Geochim. Cosmochim. Acta, v.28, p.619-640. doi: 10.1016/0016-7037(64)90082-1   DOI
2 Bozzo, A.T., Chen, J.R. and Barduhn, A.J. (1975) The properties of the hydrates of chlorine and carbon dioxide. Desalination, v.16, p.303-320, doi: 10.1016/S0011-9164(00)88004-2.   DOI
3 Burruss, R.C. (1981) Analusis of phase equilibria in C-O-H-S fluid inclusions. In: Hollister, L.S. and Crawford, M.L., (eds.): Fluid inclusions: Application to petro. Miner. Assoc. Can. Short Course Handbook, v.6, p.39-74.
4 Craig, J.R. and Barton, P.B.Jr. (1973) Thermochemical approximations for sulfosalts. Econ. Geol., v.68, p.493-506. doi: 10.2113/gsecongeo.68.4.493   DOI
5 Haynes, F.M. (1985) Determination of fluid inclusion compositions by sequential freezing. Econ. Geol., v.80, p.1436-1439. doi: 10.2113/gsecongeo.80.5.1436   DOI
6 KMPC (Korea Mining Promotion Corporation) (1980) Reserves survey report for Ssangjeon mine. 11p.
7 KMPC (Korea Mining Promotion Corporation) (1983) Prospecting and burrowing survey report. p.224-225.
8 KMPC (Korea Mining Promotion Corporation) (1989) Development prospects survey report for Geoseong mine. 8p.
9 KMPC (Korea Mining Promotion Corporation) (1990) Reserves survey report for Geoseong mine. 7p.
10 KORES (Korea Resources Corporation) (2011) Energy resources technology development project annual report for year 1. 17p.
11 KOMIR (Korea Mine Rehabilitation and Mineral Resources Corporation) (2022) Detailed geological survey report. 75p.
12 Kim, S.E., Kim, Y.D., Kim, I.H., Cho, M.S. and Yang, J.I. (1979) Geology and ore deposits investigation and feasibility study for mining and ore dressing of Ssangjeon tungsten deposits in Ulchin area. Korea Research Institute of Geoscience and Mineral Resources, 87p.
13 Kretschmar, U. and Scott, S.D. (1976) Phase relations involving arsenopyrite in the system Fe-As-S and their application. Can. Miner., v.14, p.364-386.
14 Lee, S.R. and Cho, K. (2012) Precambrian crustal evolution of the Korean peninsula. Jour. Petrol. Soc. Korea, v.21 p.89-112. doi: 10.7854/JPSK.2012.21.2.089   DOI
15 Park, M.E. (1993) H/F Variation in wolframites According to depth and temperature of mineralization at Ssangjeon, Weolag, Cheongyang and Sannae Mines, Korea. Econ. and Environ. Geol., v.26, p.259-265.
16 Potter, R.W. III., Clunne, M.A. and Brown, D.L. (1978) Freezing point depression aqueous sodium chloride solutions. Econ. Geol., v.73, p.284-285. doi: 10.2113/gsecongeo.73.2.284   DOI
17 Scott, S.D. and Barnes, H.L. (1971) Sphalerite geothermometry and geobarometry. Econ. Geol., v.66, p.653-669. doi: 10.2113/gsecongeo.66.4.653   DOI
18 Seo, J.R (2005) The status of metallic mineral mines in Korea. KIGAM Bullentin, v.9, p.22-47.
19 So, C.S., Shelton K.L., and Rye D.M. (1983) Geological sulfur isotopic, and fluid inclusion study of the Ssang Jeon Tungsten mine, Republic of Korea. Econ. Geol., v.78, p.157-163. doi: 10.2113/gsecongeo.78.1.157   DOI
20 Youn, S.T. and Park, H. (1982) Mineral paragenesis and fluid inclusion study of Ssangjeon Tungsten deposits. Mining Geol., v.15, p.221-233.