• Title/Summary/Keyword: Mindlin theory

Search Result 141, Processing Time 0.025 seconds

Eigenvalue analysis of axisymmetric circular Mindlin plates by pseudospectral method

  • Lee, Jinhee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.44-49
    • /
    • 2002
  • A study of free vibration of axisymmetric circular plates based on Mindlin theory using a pseudospectral method is presented. The analysis is based on Chebyshev polynomials that are widely used in the fluid mechanics research community. Clamped, simply supported and flee boundary conditions are considered, and numerical results are presented for various thickness-to-radius ratios.

Energy Flow Finite Element Analysis(EFFEA) of Coplanar Coupled Mindlin Plates (동일 평면상에서 연성된 Mindlin 판 구조물의 에너지흐름유한요소해석)

  • Park, Young-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.307-314
    • /
    • 2016
  • Energy flow analysis(EFA) is a representative method that can predict the statistical energetics of structures at high frequencies. Generally, as the frequency increases, the shear distortion and rotatory inertia effects in the out-of-plane motion of beams or plates become important. Therefore, to predict the out-of-plane energetics of coupled structures in the high frequency range, the energy flow analyses of Timoshenko beam and Mindlin plate are required. Unlike the energy flow model of Kirchhoff plate, the energy flow model of Mindlin plate is composed of three kinds of energy governing equations(out-of-plane shear wave, bending dominant flexural wave, and shear dominant flexural wave). This paper performed the energy flow finite element analysis(EFFEA) of coplanar coupled Mindlin plates. For EFFEA of coplanar coupled Mindlin plates, the energy flow finite element formulation of out-of-plane energetics in the Mindlin plate was performed. The general EFFEA program was implemented by MATLAB® language. For the verification of EFFEA of Mindlin plate, the various numerical applications were done successfully.

Buckling Analysis of Stiffened Plates (보강판(補剛板)의 좌굴해석(挫屈解析))

  • S.J.,Yim;P.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.2
    • /
    • pp.1-6
    • /
    • 1981
  • The buckling of stiffened plates is considered using a finite element method. In this paper stiffened plates are treated as orthotropic plates and by appling Mindlin's plate theory the effects of shear deformation to buckling loads are considered. In general, it is found that for moderately thick plates Mindlin's plate theory gives lower buckling load than those obtained using classical thin plate theory.

  • PDF

Flexural Vibration Analysis of Mindlin Rectangular Plates Having V-notches or Sharp Cracks (V노치 또는 예리한 균열을 가지는 Mindlin 직사각형 평판의 휨 진동해석)

  • Kim, Joo-Woo;Jung, Eui-Young;Kim, Seung-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.35-42
    • /
    • 2003
  • This paper provides the first known flexural vibration data for thick (Mindlin) rectangular plates having V-notches. The V-notch has bending moment and shear force singularities at its sharp corner due to the transverse vibratory bending motion. Based upon Mindlin plate theory, in which transverse shear deformation and rotary inertia effects are considered, the Ritz procedure is employed with a hybrid set of admissible functions assumed for the rotational and transverse vibratory displacements. This set includes: (1) a mathematically complete set of admissible algebraic-trigonometric polynomials which guarantee convergence to exact frequencies as sufficient terms are retained; and (2) an admissible set of Mindlin corner functions which account for the bending moment and shear force singularities at the sharp corner of the V-notch. Extensive convergence studies demonstrate the necessity of adding the Mindlin corner functions to achieve accurate frequencies for rectangular plates having sharp V-notches.

  • PDF

Free Vibration Analysis of Multi-delaminated Composite Plates (다층간분리된 적층판의 자유진동해석)

  • Taehyo Park;Seokoh Ma;Yunju Byun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.25-32
    • /
    • 2004
  • In this proposed work new finite element model for multi-delaminated plates is proposed. In the current analysis procedures of multi-delaminated plates, plate element based on Mindlin plate theory is used in order to obtain accurate results of out-of-plane displacement of thick plate. And for delaminated region, plate element based on Kirchhoff plate theory is considered. To satisfy the displacement continuity conditions, displacement vector based on Kirchhoff theory is transformed to displacement of transition element. The numerical results show that the effect of delaminations on the modal parameters of delaminated composites plates is dependent not only on the size, the location and the number of the delaminations but also on the mode number and boundary conditions. Kirchhoff based model have higher natural frequency than Mindlin based model and natural frequency of the presented model is closed to Mindlin based model.

  • PDF

An efficient six-node plate bending hybrid/mixed element based on mindlin/reissner plate theory

  • Mei, Duan;Miyamoto, Yutaka;Iwasaki, Shoji;Deto, Hideaki;Zhou, Benkuan
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.69-83
    • /
    • 1997
  • A new efficient hybrid/mixed thin~moderately thick plate bending element with 6-node (HM6-14) is formulated based on the Reissner-Mindlin plate bending theory. The convergence of this element is proved by error estimate theories and verified by patch test respectively. Numerical studies on such an element as HM6-14 demonstrate that it has remarkable convergence, invariability to geometric distorted mesh situations, to axial rotations, and to node positions, and no "locking" phenomenon in thin plate limit. The present element is suitable to many kinds of shape and thin~moderately thick plate bending problems. Further, in comparison with original hybrid/mixed plate bending element HP4, the present element yields an improvement of solutions. Therefore, it is an efficient element and suitable for the development of adaptive multi-field finite element method (FEM).

Comparative Study on the Performance of Quadrilateral Plate Elements for the static Analysis of Limear Elastic structures( I );Displacements (사각형 판 유한 요소들의 정적 성능 비교 분석 I)

  • 이병채;이용주
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.91-104
    • /
    • 1990
  • Static performance of quadrilateral plate elements was compared through numerical experiments. Sixteen plate elements were selected for comparison from the literature, which were displacement elements, equilibrium elements, mixed elements or hybrid elements based on the Kirchhoff theory or the Mindlin theory. Thin plate bending problems, such as square plate problems, rhombic plate problems, circular plate problems and cantilevered plate problems, were modeled by various meshes and solved under various kinds of boundary conditions. Kirchhoff elements were not so good as Mindlin elements in view of efficiency and convergence. Hinton's elements resulted in the best results for the problems considered with respect to efficiency, convergence and reliability but in some problems they also resulted in more or less inaccurate solutions.

  • PDF

A Study on the Finite Element Analysis of Three Dimensional Plate Structures (3차원 공간 판구조물의 유한요소 해석에 관한 연구)

  • 권오영;남정길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.54-59
    • /
    • 1999
  • High-speed electronic digital computers have enabled engineers to employ various numerical discretization techniques for solutions of complex problems. The Finite Element Method is one of the such technique. The Finite Element Method is one of the numerical analysis based on the concepts of fundamental mathematical approximation. Three dimensional plate structures used often in partition of ship, box girder and frame are analyzed by Finite Element Method. In design of structures, the static deflections, stress concentrations and dynamic deflections must be considered. However, these problem belong to geometrically nonlinear mechanical structure analysis. The analysis of each element is independent, but coupling occurs in assembly process of elements. So, to overcome such a difficulty the shell theory which includes transformation matrix and a fictitious rotational stiffness is taken into account. Also, the Mindlin's theory which is considered the effect of shear deformation is used. The Mindlin's theory is based on assumption that the normal to the midsurface before deformation is "not necessarily normal to the midsurface after deformation", and is more powerful than Kirchoff's theory in thick plate analysis. To ensure that a small number of element can represent a relatively complex form of the type which is liable to occur in real, rather than in academic problem, eight-node quadratic isoparametric elements are used. are used.

  • PDF

hp-Version of the Finite Element Analysis for Reissner-Mindlin Plates (Reissner-Mindlin 평판의 hp-Version 유한요소해석)

  • 우광성;이기덕
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.39-44
    • /
    • 1992
  • This paper is concerned with formulations of the hierarchical $C^{o}$-plate element on the basis of Reissner-Mindlin plate theory. On reason for the development of the aforementioned element is that it is still difficult to construct elements based on h-version concepts which are accurate and stable against the shear locking effects. An adaptive mesh refinement and selective p-distribution of the polynomial degree using hp-version of the finite element method we proposed to verify the superior convergence and algorithmic efficiency with the help of the clamped L-shaped plate problems.s.

  • PDF

Vibration frequencies for elliptical and semi-elliptical Mindlin plates

  • Wang, C.M.;Xiang, Y.;Kitipornchai, S.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.35-48
    • /
    • 1995
  • This paper presents new frequency results for elliptical and semi-elliptical Mindlin plates of various aspect ratios, thicknesses and boundary conditions. The results were obtained using the recently developed computerized Rayleigh-Ritz method for thick plate analysis. For simply supported elliptical plates, it is proposed that the penalty function method be used to enforce the condition of zero rotation of the midplane normal in the tangent plane to the plate boundary.