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Eigenvalue analysis of axisymmetric circular Mindlin plates

by pseudospectral method
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ABSTRACT

A study of free vibration of axisymmetric circular plates based on Mindlin theory using a pseudospectral

method is presented. The analysis is based on Chebyshev polynomials that are widely used in the fluid mechanics

research community. Clamped, simply supported and free boundary conditions are considered, and numerical

results are presented for various thickness-to-radius ratios.
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1. Introduction

Plate vibration is important in many applications
in mechanical, civil and aerospace engineering. Real
appreciable  thickness
transverse shear and rotary inertia are not negligible

plates may have where

as assumed in the classical plate theory. As a result
the thick plate model based on Mindlin theory has
gained more popularity. Surveys of the literature show
that considerable studies have been done on the free
based

vibration of circular on Mindlin

[1-8]

plates
theory

The pseudospectral method can be considered as a
spectral method that performs a collocation process.
As the formulation is simple and powerful enough to
close to exact

produce solutions

solutions, this method has been used extensively in

approximate

fluid mechanics researches, including meteorological
studies® "%,

The pseudospectral method can be made as
spatially accurate as desired through exponential rate
of convergence with mesh refinement. It also permits
the choice of a wide variety of functions for the
expansion. Even though this method could be used

for the solution of structural mechanics problems, it

44
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the
mechanics community and few articles are available
the method  has

successfully applied. Soni and Amba-Rao'!!
Gupta and Lal'? are among those who have applied
Chebyshev collocation method to the axisymmetric

has been largely unnoticed by structural

where pseudospectral been

and

vibration analyses of circular and annular plates.
Mattei
solution of the vibration problem of a fluid loaded

applied the pseudospectral method to the

plate, but it was dominated by the point of view of
(31, the of
pseudospectral method in the solution of structural

fluid mechanics Recently, usefulness

mechanics problems has been demonstrated in an
analysis of L-shaped Reissner-Mindlin plate“‘”.

In the present work, the pseudospectral method is
applied to the free axisymmetric vibrations of circular

Mindlin plates.
2. Circular Plates and Pseudospectral Method

The equations of motion of a homogeneous,

isotropic axisymmetric circular plate based on Mindlin

theory are o
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oM, . 1 _ oh® 3w
o T, M9 =" o2 ' 0
0Q oW
ar + Q 9
where W7, £) and ¥(7,{) are the transverse

displacement and the bending rotation normal to the
midplane in the radial direction, and % and e are the
thickness and the density of the plate, respectively.

The stress resultants M,, M, and @ are defined by

M=p(2L+Ly),
- E
wy=p(F +-5F ar) .o
=52 oW
R=x Gh( r+ ar )
where D= Ehr*/12(1—1?) is the flexural
rigidity, FE is the modulus of elasticity, v is the

Poisson's ratio, x2= 7r2/ 12 is the shear correction
factor, and G is the shear modulus.
Substitution of (2) into (1) assuming a sinusoidal

motion in time

U(r, ) =¢(»)cos wt ,

3
W7, ) = w(r) cos wt @
yields
&, 1 dp ( 1, £°Gh )
ar? T r dr s + D ¢
_ xGh dw _ _ oy
D ar 12D Q)
_Q _Q RN 4 1 dw - wZ__L
dr dyz r dr x2G
The boundary conditions considered in the present
study are
clamped: w=0, ¢=90
simply supported: w=0, M,=0 &)
free: M,=0, Q=0.
In their attemps to compute the natural
frequencies of axisymmetric circular and annular

plates Soni and Amba-Rao'"" and Gupta and Lal"?
formed a fourth order differential equation in terms of
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5]

¢ by w, and applied Chebyshev
collocation method. The boundary conditions that did
not contain the eigenvalue were combined with the
governing equations to form the characteristic
equations from which the eigenvalues were calculated.
Their formulations, however, did not lead to a
standard system equation of eigenvalue problems
making it more difficult to use subroutine libraries to
find the eigenvalues.

The author tried to make the most of the
conceptual simplicity of the pseudospectral method
and pursued the solution of (4) without eliminating

eliminating

w. But the efforts to compute the eigenvalues using
the standard set of Chebyshev polynomials as basis
functions and including the boundary conditions in the
system equation as side constraints were plagued by
unphysical complex eigenvalues and spurious roots.
Zebib!"”! reported that spurious roots occurring in the
of hydrodynamic stability eigenvalue
problems could be removed by the introduction of the
Galerkin spectral method.

'] also showed the spurious roots in the

solution

Lee et a
solution of the Rayleigh convection problem were
suppressed by the Galerkin spectral method and
compared the results with those of pseudospectral
method. It was decided to apply the pseudospectral
method to the title problem using test functions that
satisfy the boundary conditions as basis functions.

The distance from the origin, #, is normalized as
x=—1 <[0,1] 6)

where R is the radius of the plate, and (4) can
be rewritten as

1 & 1 d¢ .{_1 *Gh
e sz:i’i—( sz+ 5o
**Gh _dw — o,

RD dx 120
1db, ¢ 1 dw M
R dx xR R? dx?
1 dw _ 2.0
t R <R dx Y g ?

Here ¢ and w are represented by the same
truncation. The eigenfunction expansions are then
given by
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N

Hx)= 2 a,A,(x) ,

n=1

N
w(x) = nZ::l b,B,(x)

®

where @, and b, are the expansion coefficients,
A, (x) and B, (x)

functions. It is worthwhile to note that

one-dimensional basis

(x) and
w(x) in the axisymmetric analysis possess odd and
even parities, respectively. The eigenfunctions can be
expanded using only basis functions of the same
parity (o,

The pseudospectral algebraic system is formed by

N

are

setting the residuals of (7) equal to zero at
collocation points

m(2i—1)

N i

X;= COS i=1,-

that are the roots of Chebyshev polynomials.
When the expansions of (8) are substituted and

collocated at x,, (7) is rewritten as

A”n(xi) A’n(xi)
R? xR?
2Gh
_( x%lRZ T AN
2 N
— R 0B ()

__ 2ok &
=- o' op 2 A
N A’n(xi) An(xi) )
EI“"( R T iR

N B’ (x) B (x) )
+ nzlbn( R? x;R?

N
Zlan{ +

(10

+

where  stands for differentiation with respect to
x. The unknowns in (10) are @ and the expansion
coefficients of (8). Equation (10) can also be written

in matrix form
Kd=w'Hd (11)

where K and H are matrices of size 2Nx2N,

46

and the eigenvector d is defined by

dz{al,az,"',aN, bl’ bz, "’,bN}T. (12)

The pseudospectral algebraic problem is solved
for the eigenvalues using Eispack GRR subroutine.

3. Numerical Examples

Table 1 Convergence test of the frequency parameter
A% (clamped, 1=0.3, h/R=0.05)

N=2 N=4 =6 N=9 N=12 N=15
1 110.034 10.137 10.145 10.145 10.145 10.145
2 - 37.756 38.840 38.855 38.855 38.855
3 - 139.78 83.590 84.994 84.995 84.995
4 - - 161.70 146.26 146.40 146.40
5 - - 494.64 218.28 220.72 220.73
6 - - - 321.70 305.31 305.71
7 - - - 577.55 396.09 399.29
8 - - - 1330.7 516.75 499.07
9 - - - - 748.74 602.11
10 - - - - 1233.9 733.70
11 - - - - - 955.21
12 - - - - - 1344.1|.
13 - - - - - 2084.7
14 - - - - - -
15 - - - - - -

N=20 N=25 N=30| Irie Liu  Liew
1 110.145 10.145 10.145|10.145 10.212 10.145
2 |38.855 38.855 38.855|38.855 39.209 38.855
3 [84.995 84.995 84.995|84.995 86.064 84.995
4 {146.40 146.40 146.40]146.40 148.86 146.40
5 1220.73 220.73 220.73 220.73
6 1305.71 305.71 305.71 305.71
7 1399.32 399.32 399.32 339.32
8 1499.82 499.82 499.82 449.82
9 1605.78 605.79 605.79 605.78
101716.03 716.07 716.07 716.07
11(829.08 829.74 829.74 829.74
12(942.32 946.07 946.07 946.07
13{1070.2 1064.4 1064.5 1064.5
14(1255.1 1183.9 1184.5 1184.5
15]1533.1 1302.4 1305.7 1305.7
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The clamped boundary condition

¢=0, w=0 at x=1 (13)
is satisfied by the choice of basis functions
An(x) = T2n+1(x) - T1(x), (14)

B, (0)= T ,(x) — Ty(x)

where T, and T, ., are even and odd terms

of Chebyshev polynomials of the first kind.

A preliminary run for the convergence check is
carried out with thickness-to-radius ratio %/R=0.05
and the result is given in Table 1. This clearly shows
the rapid convergence of the pseudospectral method
that requires less than 15 terms for the first 6
eigenvalues and less than 30 terms for convergence of
the lowest 15 modes to 5 significant digits. The
results of Irie et al[6], Liu and Chen'” and Liew e al
B are also given in Table 1 for comparison. The
Poisson's ratio v is 0.3 throughout the paper. The
given numbers in the table are nondimensionalized

frequency parameters /1% defined as

RZ
E=o Voo 15
i i D/ph ( )
Computational results with N=30 for various
thickness-to-radius ratios of plates with clamped

boundary condition are given in Table 2.
The simply supported boundary condition

—Z,xé-i—uqﬁZO, w=1_0 at

(16)
is satisfied when

A= Ty () — Ty () —A2BEL)

Bn(x) = Tzn(x) - To(x) 17

are selected as the basis functions for ¢(x) and

w(x).
The correction term ,4_711(%’/&,6 appearing in

A ,(x) is added to account for the first condition of

(16). The computed eigenvalues of the circular plates
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with simply supported boundary condition are shown
in Table 3 for various thickness-to-radius ratios.

The basis functions for ¢(x) and w(x) are
required to satisfy

_aé — 1 dw
dx+u¢—0, ¢+R

“ax 0

at x=1

for the free edge. The solution of the differential
condition —Z%#— v¢=0 at x=1 is the same as in

the simply supported boundary condition. The mixed
1 adw
R dx

however, makes it difficult to select suitable basis

w. Since ¢+ L _dw

R dx
function of x and vanishes at x=1, it is more

1 _aw
R dx

The eigenfunction expansions are redefined as

differential condition ¢+ =0 at x=1,

functions for is an odd

convenient to handle ¢+ rather than w.

U= 3 a,A ),

N
7115 %f% - nZ:lchn(x).

19)
o+

Table 2 Frequency parameter /1% (clamped boundary
condition, »=0.3, N=30)

/R
0.01 0.02 0.05 0.1 0.15 0.2
1 {10213 10.204 10.145 9941 9.629 9.240
2 |39.734 39.620 38.855 36.479 33.393 30.211
3 |88.926 88.401 84.995 75.664 65.551 56.682
4 [157.65 156.08 146.40 123.32 102.09 85.571
5 1245.74 242,06 220.73 176.52 140.93 115.56
6 135299 345.64 305.71 23297 180.99 14594
7 1479.19 466.04 399.32 201.71 221.62 17497
8 1624.05 602.37 499.82 351.82 26245 178.76
9 | 787.27 753.72 605.79 412.77 301.11 205.32
10 | 968.52 919.15 716.07 474.18 305.15 210.53
11 {11674 1097.7 829.74 53581 336.52 23746
12 1 1383.6 12884 946.07 597.43 34559 248.18
13 11616.7 1490.5 1064.5 657.61 380.88 268.60
14 | 1866.3 17029 1184.5 662.37 388.16 290.67
15 12131.8 1924.8 1305.7 698.63 42543 299.71
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Table 3 Frequency parameter /1% (simply supported
boundary condition, »=0.3, N=30)

h/R

0.01 002 0.05 0.1 0.15 0.2

4.894 9.629 9.240
28.240 33.393 30.211
65.942 65.551 56.682
113.57 102.09 85.571
167.53 140.93 115.56
225.34 180.99 145.94
285.44 221.62 174.97
346.83 262.45 178.76
408.91 301.11 205.32
471.31 305.15 210.53
533.80 336.52 237.46
596.23 345.59 248.18
649.29 380.88 268.60
658.55 388.16 290.67
677.58 42543 299.71

4.934 4933 4.925
29.706 29.656 29.323
74.050 73.751 71.756
137.96 136.92 130.35
221.31 218.65 202.81
323.85 318.27 286.79
44552 435.05 380.13
585.92 568.13 480.94
744.86 716.61 587.65
921.83 879.52 698.96
1116.8 1056.0 813.86
1329.1 1245.0 931.50
1558.4 1445.6 1051.2
1804.5 1657.0 1172.6
2066.6 18782 1295.1

O W0 2 N N D W N e

e e
wm AW N = O

Table 4 Frequency parameter /l% (free boundary

condition, v=0.3, N=30)

h/R
0.01 002 0.05 0.1 0.15 0.2
1[9.002 8998 8969 8.868 8.710 8.505
2 (38.416 38.335 37.787 36.041 33.674 31.111
3 |87.609 87.189 84.443 76.676 67.827 59.645
4 {156.37 155.04 146.76 126.27 106.40 90.059
5 1244.53 241.31 222.38 181.46 146.83 120.57
6 [351.89 34531 308.98 239.98 187.79 149.63
7 (478.24 466.27 404.44 300.38 228.39 171.18
8 1623.31 603.32 506.96 361.73 267.32 183.36
9 [786.79 755.54 615.01 423.4] 297.08 199.04
10968.36 922.00 727.37 484.93 310.03 217.13
11{1167.7 1101.7 843.04 545.74 330.92 231.82
1211384.3 1293.8 961.26 604.75 351.70 251.78
1311617.9 1497.3 1081.4 653.92 372.16 268.69
1411868.1 1711.3 1202.9 667.41 397.54 285.12
15(2134.3 1934.9 1325.5 695.93 416.63 308.16
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The basis functions that satisfy the boundary
cond\itions are

A= T i - Ty — A2 E1)

Col0)=T 5,4 (%)~ T (x). (20

It is also necessary to rearrange the governing
_ 1 dw
¢ and ¢= ¢+ B dp MY

appear as the dependent variables as follows

equation (7) so that

_l_ﬂ_*_LLiS[i_
R? & xR® dx
_X*Gh ,_ 5 oh®
D ¢=- ¢ pp?¢.
1 dé, 1 dp__1 _,
R? dx? ' xR® dx xR
=—w2—x§5(¢—¢).

1
xZRZ ‘/}

21

The pseudospectral algebraic system is again
formed by requiring the above equations are satisfied

at all N collocation points (9). When (20) is
substituted and collocated at x,, (21) is rewritten as

&, { AT m) | A Ax)
a=1 " R? xR *2R?

x2Gh & oy 2h3 N
D nglcncn(xi)_ @ 12D nzlanAn(xi)

+

y C”n(xi) C’n(xi) _ Cn(xi)

nZl c"[ R? + x,—R2 %2R?

S - B N _
@ XZG nZl{cncn(xz) anAn(xz)}

(22)

The eigenvalue problem (22) is solved using
Eispack GRR subroutine. The computational results
with free boundary condition are given in Table 4. It
is also found that, for the same vibration mode and
boundary condition, smaller truncation N is required
for the plate with larger thickness-to-radius ratio
h/R.

4. Conclusions

The
polynomials as basis functions is applied to the free

pseudospectral method using Chebyshev

vibration analysis of axisymmetric circular plates
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based on Mindlin theory.

Rapid convergence and accuracy as well as the
conceptual simplicity of the pseudospectral method is
applied
problems. It is observed that the choices of basis

achieved when it is to the -eigenvalue
eigenfunctions that satisfy the boundary conditions
suppresses spurious eigenvalues that were present
when the standard set of Chebyshev polynomials was
used as basis functions with the boundary conditions
included in the system equation as side constraints.
Numerical examples of circular plates with clamped,
simply supported and free boundary conditions are
provided for various thickness-to-radius ratios.
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