• Title/Summary/Keyword: Microstructure properties

Search Result 4,066, Processing Time 0.03 seconds

Properties of the Alkali Activated Mortar According to Metakaolin Replacement Ratio (알칼리 활성화 모르타르의 메타카올린 치환율에 따른 특성)

  • Seo, Dong-Hyeon;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.313-320
    • /
    • 2016
  • The aim of this study is to look into the metakaolin replacement ratio of blast furnace slag based alkali activated slag mortar and its mechanical characteristics according to changes in stimulant concentration. Metakaolin has high fineness, and therefore the fluidity becomes lower as the replacement ratio becomes higher. So in this study, a sufficient value of mixing water was provided to secure fluidity for the characteristic experiment, and a different W/B was derived for each specimen in order to make the fluidity identical. A characteristic experiment was conducted according to the mol concentration of NaOH, which was used as the mixing water that affects fluidity. Additionally, compressive strength measurement, observation of inner microstructure through SEM, acid resistance experiment, and neutralization resistance was conducted. The results of this study revealed that for a high concentration NaOH solution to have even fluidity, a high W/B is necessary, and the functions were enhanced, not degraded.

A Study on the Mechanical Properties as a Result of Friction Welding With SKH55 and SM45C (고속도강(SKH55)과 기계구조용 탄소강(SM45C)의 마찰용접특성에 관한 연구)

  • Choi, Su-Hyun;Min, Byung-Hoon;Kim, Noh-Kyung;Lim, Hyung-Taek;Min, Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.65-70
    • /
    • 2008
  • This study deals with the friction welding of SKH55 and SM45C; The friction time was variable conditions under the conditions of spindle revolution 2,000rpm, friction pressure of 190MPa, upset pressure of 270MPa and upset time of 2.0 seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied, and so the results were as follows. 1. When the friction time is 1.0 seconds, the tensile strength of friction welds was 926MPa, which is around as much as 84% of the tensile strength of base metal(SKH55), the bending strength of friction welds was 1,542MPa, which is around as much as 80% of the bending strength of base metal(SKH55), the shear strength of friction welds was 519MPa, which is around as much as 70% of the shear strength of base metal(SKH55). 2 According to the hardness test, the hardness distribution of the weld interface was formed from 964Hv to 254Hv. HAZ(Heat Affected Zone) was formed from the weld interface to 1.5mm of SKH55 and 2mm of SM45C.

A Study on Erosion Structure Properties for Thermal Insulation Materials on Carbon-Carbon Composites and Graphite Nozzle Throat (C-C 복합재료와 Graphite 노즐목 내열재의 침식조직 특성에 대한 연구)

  • Kim, Young In;Lee, Soo Yong
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.42-49
    • /
    • 2017
  • The solid rocket motor(SRM) consists of a motor case, igniter, propellants, nozzle, insulation, controller, and driving device. The liquid rocket propulsion systems(LRPSs) cools the nozzle by the fuel and oxidizer but SRM does not cool the nozzle. The nozzle of SRM is high temperature condition and high velocity condition so occurs the erosion by combustion gas. This erosion occurs the change of nozzle throat and reduces thrust performance of rocket. The material of Rocket nozzle is minimization of erosion and insulation effect and endure the shear force, high temperature and high pressure. The purpose of this study is to investigate the erosion characteristics of solid rocket nozzles by each combustion time. Through the structure inspection of Graphite and C-C composite, identify the characteristics of the microstructure before and after erosion.

Analysis of Pore Structure for Porous Body with Coal Fly ash and Clay (석탄회-점토계 다공체의 기공구조 분석)

  • 이기강;박천주
    • Korean Journal of Crystallography
    • /
    • v.9 no.1
    • /
    • pp.64-70
    • /
    • 1998
  • Porous body was prepared from coal fly ash 70 wt%0clay 30 wt% slip using DCC(Direct Coagulated Casting) method. Effect of the specific gravity of the slip on the pore size and distribution of the sintered body was examined by the SEM observation of microstructure and mercury porosimetry measurement of the pore size distribution. Average pore size of the porous sintered body was about 2.5μm for all slips with specific gravity of 1.55, 1.60 and 1.65g/cm3, respectively. Sintered body prepared from the slip of specific gravity of 1.60g/cm3 have the narrowest pore size distribution. slip of specific gravity of 1.55g/cm3 shows broader pore size distribution due to slow gellation process. Slip of specific gravity of 1.65g/cm3 required large amount of deflocculant and showed large variation of the viscosity with addition of coagulant which resulted in very unstable slip properties.

  • PDF

Copolymerizations of Ethylene with 1-Hexene over ansa-Metallocene Diamide Complexes

  • Kim, Il;Kwak, Chang-Hun;Son, Gi-Wan;Kim, Jae-Sung;Sinoj Abraham;Bijal K. B.;Ha, Chang-Sik;Kim, Bu-Ung;Jo, Nam-Ju
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.316-321
    • /
    • 2004
  • We have performed copolymerizations of ethylene with 1-hexene using various ansa-metallocene compounds in the presence of the non-coordinative [CPh$_3$][B(C$\_$6/F$\_$5/)$_4$ion pair as a cocatalyst. The metallocenes chosen for this study are isospecific metallocene diamide compounds, rac-(EBI)Zr(NMe$_2$)$_2$ [1, EBI = ethylene-l ,2-bis(1-indenyl)], rac-(EBI)Hf(NMe$_2$)$_2$ (2), rac-(EBI)Zr(NC$_4$H$\_$8/)$_2$ (3), and rac-(CH$_3$)$_3$Si(1-C$\_$5/H$_2$-2-CH$_3$-4-$\^$t/C$_4$H$\_$9/)2 Zr(NMe$_2$)$_2$ (4), and syndiospecific metallocene dimethyl compounds, ethylidene(cyclopentadienyl)(9-fluorenyl) ZrMe$_2$ [5, Et(Flu)(Cp )ZrMe$_2$] and isopropylidence (cyclopentadienyl)(9-fluorenyl)ZrMe$_2$ [6, iPr(Flu)(Cp)ZrMe$_2$]. The copolymerization rate decreased in the order 4 >1-3>2 >5>6. The reactivity of I -hexene decreased in the order 2 >6>1- 3-5> 4. We characterized the microstructure of the resulting poly(ethylene-co-l-hexene) by $\^$l3/C NMR spectroscopy and investigated various other properties of the copolymers in detail.

Identification of ginseng root using quantitative X-ray microtomography

  • Ye, Linlin;Xue, Yanling;Wang, Yudan;Qi, Juncheng;Xiao, Tiqiao
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.290-297
    • /
    • 2017
  • Background: The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ, and three-dimensional quantitative imaging properties. Methods: The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. Results: The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. Conclusion: This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

Structural transition of Ti-Cr-V alloys with hydrogenation and dehydrogenation and the improvement of their hydrogen storage properties by heat treatment (Ti-Cr-V 합금의 수소화-탈수소화에 따른 상천이 및 열처리에 의한 수소저장특성의 향상)

  • You, Jeong-Hyun;Cho, Sung-Wook;Shim, Gun-Choo;Choi, Good-Sun;Park, Choong-Nyeon;Choi, Jeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.125-132
    • /
    • 2006
  • The alloys which compositions were represented by the formula, $Ti_{(0.22+X)}Cr_{(0.28+1.5X)}V_{(0.5-2.5X)}$ ($0{\leq}X{\leq}0.12$), had the total hydrogen storage capacity higher than 3 wt% and the effective hydrogen storage capacity higher than 1.4 wt%. Particularly, among all the tested alloys, the $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy exhibited the best effective hydrogen storage capacity of 1.65 wt%. Furthermore, the reversible bcc${\leftrightarrow}$fcc structural transition was observed with hydrogenation and dehydrogenation, which predicted the possibility of pressure cycling. EDS analysis revealed micro-segregation, which suggested the necessity of microstructure homogenization by heat treatment. The $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy was selected for heat treatment and for other related studies. The results showed that the total and the effective hydrogen storage capacity increased to 3.7 wt% and 2.3 wt%, respectively. The flatness of the plateau region was also greatly improved and heat of hydride formation was determined to be approximately -36 kJ/mol $H_2$.

Influence of Ozone Treatment on Cr(VI) Adsorption of Activated Carbon (오존처리가 활성탄소의 Cr(VI) 흡착특성에 미치는 영향)

  • Park, Soo-Jin;Kim, Byeong-Joo
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.644-649
    • /
    • 2006
  • In this paper, the Cr(VI) adsorption behaviors of activated carbons (ACs) treated by various ozone treatment conditions were studied. The surface properties of the ACs studied were determined by pH, acid-base, and FT-IR measurements. $N_2$ adsorption isotherm characteristics at 77K were confirmed by BET equation, Boer's t-plot method, and Horvath-Kawazoe's slit pore model. Also, the total Cr adsorption amount onto the ACs was measured by ICP-AES. As a result, the ozone treatment led to an increase of oxygen-containing polar functional groups and total acidity as well. Meanwhile, the specific surface areas or micropore volumes were slightly decreased after the ozone treatment due to the micropore filling or blocking. Nevertheless, the total Cr adsorption of ACs was increased with increasing of the ozone treatment time, attributed to the good interaction between Cr ions and polar functional groups on the ACs.

Characteristics of Copper Film Fabricated by Pulsed Electrodeposition with Additives for ULSI Interconnection (펄스전착법과 첨가제를 사용하여 전착된 ULSI배선용 구리박막의 특성)

  • Lee Kyoung-Woo;Yang Sung-Hoon;Lee Seoghyeong;Shin Chang-Hee;Park Jong-Wan
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.237-241
    • /
    • 1999
  • The characteristics of copper thin films and via hole filling capability were investigated by pulsed electrodeposition method. Especially, the effects of additives on the properties of copper thin films were studied. Copper films, which were deposited by pulsed electrodeposition using commercial additives, had low tensile stress value under 83.4 MPa and high preferred Cu (111) texture. Via holes with $0.25{\mu}m$ in diameter and 6 : 1 aspect ratio were successfully filled without any defects by superfilling. It was observed that copper microstructure deformed by twining. After heat treatment at $500^{\circ}C$ for 1 k in vacuum furnace, grain size was 1 or 2 times as large as film thickness and the bamboo structure was formed. Heat treated copper films showed good resistivities of $1.8\~2.0{\mu}{\Omega}{\cdot}cm$.

Thermal Conducting Behavior of Composites of Conjugated Short Fibrous-SiC Web with Different Filler Fraction (짧은 섬유상간의 접합을 가진 Silicon Carbide Web 복합재료의 분율별 열전도 거동)

  • Kim, Tae-Eon;Bae, Jin Chul;Cho, Kwang Yeon;Lee, Dong Jin;Shul, Yong-Gun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.549-555
    • /
    • 2012
  • Silicon carbide(SiC) exhibits many unique properties, such as high strength, corrosion resistance, and high temperature stability. In this study, a SiC-fiber web was prepared from polycarbosilane(PCS) solution by employing the electrospinning process. Then, the SiC-fiber web was pyrolyzed at $1800^{\circ}C$ in argon atmosphere after it was subjected to a thermal curing. The SiC-fiber web (ground web)/phenolic resin (resol) composite was fabricated by hot pressing after mixing the SiC-fiber web and the phenolic resin. The SiC-fiber web composition was controlled by changing the fraction of filler (filler/binder = 9:1, 8:2, 7:3, 6:4, 5:5). Thermal conductivity measurement indicates that at the filler content of 60%, the thermal conductivity was highest, at 6.6 W/mK, due to the resulting structure formed by the filler and binder being closed-packed. Finally, the microstructure of the composites of SiC-fiber web/resin was investigated by FE-SEM, EDS, and XRD.