Influence of Ozone Treatment on Cr(VI) Adsorption of Activated Carbon

오존처리가 활성탄소의 Cr(VI) 흡착특성에 미치는 영향

  • Park, Soo-Jin (Dept. of Chemistry, Inha Univ.) ;
  • Kim, Byeong-Joo (Dept. of Green Chemistry & Environmental Biotechnology, Univ. of Science & Technology)
  • 박수진 (인하대학교 화학과) ;
  • 김병주 (과학기술연합대학원대학교 청정화학 및 생물과)
  • Received : 2006.05.26
  • Accepted : 2006.08.16
  • Published : 2006.12.31

Abstract

In this paper, the Cr(VI) adsorption behaviors of activated carbons (ACs) treated by various ozone treatment conditions were studied. The surface properties of the ACs studied were determined by pH, acid-base, and FT-IR measurements. $N_2$ adsorption isotherm characteristics at 77K were confirmed by BET equation, Boer's t-plot method, and Horvath-Kawazoe's slit pore model. Also, the total Cr adsorption amount onto the ACs was measured by ICP-AES. As a result, the ozone treatment led to an increase of oxygen-containing polar functional groups and total acidity as well. Meanwhile, the specific surface areas or micropore volumes were slightly decreased after the ozone treatment due to the micropore filling or blocking. Nevertheless, the total Cr adsorption of ACs was increased with increasing of the ozone treatment time, attributed to the good interaction between Cr ions and polar functional groups on the ACs.

본 연구에서는 다양한 조건에서 기체상태의 오존처리된 활성탄소를 이용하여 수용액 상태에서의 Cr(VI)의 흡착특성에 대하여 고찰하였다. 오존처리된 활성탄소의 표면특성의 변화는 pH, 산도-염기도, FT-IR을 이용하였으며, $N_2$/77K 등온 흡착특성은 BET식, Boer의 t-plot, 그리고 Horvath-Kawazoe의 slit pore model을 이용하여 확인하였다. 또한, 총 Cr의 흡착량은 ICP-AES를 이용하여 확인하였다. 실험 결과, 오존처리는 활성탄소의 표면에 산소를 함유한 극성 관능기를 증가시켰으며, 이로 표면산도 또한 증가되었다. 한편, 오존처리의 영향으로 보이는 활성탄소의 비표면적과 미세기공 부피의 감소가 관찰되었지만, 활성탄소의 총 Cr 흡착량은 오존처리 시간이 증가할수록 비례적으로 증가하였다. 이는 활성탄소의 Cr 흡착특성이 비표면적보다 상대적으로 표면에 형성된 극성 관능기의 영향을 크게 받는 것으로 판단된다.

Keywords

References

  1. EPA (Environmental Protection Agency), EPA/625/5-90/025, EPA/625/4-89/023, Cincinnati, US (1990)
  2. Patterson, J. W., Industrial Wastewater Treatment Technology, 2nd ed., Butterworth- Heinemann, London, 95-120(1985)
  3. Selvaraj, K., Manomani, K. and Pattabhi, S., 'Removal of Hexavalent Chromium Using Distillery Sludge', Biores. Technol., 89(2), 207-211(2003) https://doi.org/10.1016/S0960-8524(03)00062-2
  4. Babel, S. and Kurniawan, T. A., 'Cr(VI) Removal from Synthetic Wastewater Using Coconut Shell Charcoal and Commercial Activated Carbon Modified with Oxidizing Agents and/or Chitosan', Chemosphere, 54(7), 951-967(2004) https://doi.org/10.1016/j.chemosphere.2003.10.001
  5. Tseng, H., Wey, M., Liang, Y. and Chen, K., 'Catalytic Removal of $SO_2$, NO, and HCl from Incineration Flue Gas over Activated Carbon-supported Metal Oxides', Carbon, 41(1), 39-42(2003)
  6. Benito, Y. and Ruiz, M. L., 'Reverse Osmosis Applied to Metal Finishing Wastewater', Desalination, 142(3), 229-234(2002) https://doi.org/10.1016/S0011-9164(02)00204-7
  7. Babel, S. and Kurniawan, T. A., 'Low-cost Adsorbents for Heavy Metal Uptake from Contaminated Water', J. Hazard. Mater., 97(1-3), 219-243(2003) https://doi.org/10.1016/S0304-3894(02)00220-0
  8. Genc, O., Arpa, C., Bayramoglu, G., Arica, M. Y. and Bektap, S., 'Selective Recovery of Mercury by Pricion Brown MX 5BR Immobilized Polyhydroxyethylemethacrylate/Chitosan Composite Membranes', Hydrometallurgy, 67(1-3), 53-62(2002) https://doi.org/10.1016/S0304-386X(02)00139-1
  9. Mohanty, K., Jha, M., Meikap, B. C. and Biswas, M. N., 'Removal of Chromium (IV) from Dilute Aqueous Solutions by Activated Carbon Developed from Terminalia Arjuna Nuts Activated with Zinc Chloride', Chem. Engin. Sci., 60(11), 3049-3059 (2005)
  10. Lyubchik, S. I., Lyubchik, A. I., Galushko, O. L., Tikhonova, L. P., Vital, J., Fonseca I. M., and Lyubchik, S. B., 'Kinetics the Thermodynamics of the Cr(III) Adsorption on the Activated Carbon from Co-mingled Wastes', Colloids Surf. A, 242(1-3), 151-158 (2004) https://doi.org/10.1016/j.colsurfa.2004.04.051
  11. Park, S. J., Park, B. J. and Ryu, S. K., 'Electrochemical Treatment on Activated Carbon Fibers for Increasing the Amount and Rate of Cr(VI) Adsorption', Carbon, 37(8), 1223-1226(1999) https://doi.org/10.1016/S0008-6223(98)00318-2
  12. Ton-That, C. Teare, D. O. H., Campbell, P. A. and Bradley, R. J., 'Surface Characterization of Ultraviolet-ozone Treated PET Using Atomic Force Microscopy and X-ray Photoelectron Spectroscopy', Surf. Sci., 433-435, 278-282(1999)
  13. Ko, Y. G., Kim, Y. H., Park, K. D., Lee, H. J., Lee, W. K., Park, H. D., Kim, S. H., Lee, G. S. and Ahn, D. J., 'Immobilization of Poly(ethylene glycol) or Its Sulfonate onto Polymer Surface by Ozone Oxidation', Biomaterials, 22(15), 2115-2123(2001) https://doi.org/10.1016/S0142-9612(00)00400-2
  14. Fu, X., Lu, W. and Chung, D. D. L., 'Ozone Treatment of Carbon Fiber for Reinforcing Cement', Carbon, 36(9), 1337-1345 (1998) https://doi.org/10.1016/S0008-6223(98)00115-8
  15. Boehm, H. P., 'Chemical Identification of Surface Groups', Adv. Catal., 16, 179-287(1966) https://doi.org/10.1016/S0360-0564(08)60354-5
  16. Brunauer, S., Emmett, P. H. and Teller, E., 'Adsorption of Gases in Multimolecular Layers', J. Am. Chem. Soc., 60(2), 309-319 (1938) https://doi.org/10.1021/ja01269a023
  17. De Boer, J. H., Linppen, B. G., Plas, P. and van Zonder, G. J., 'Studies on Pore Systems in Catalysts: VII. Description of the Pore Dimentions of Carbon Blacks by the t Method', J. Catal., 4(6), 649-653(1965) https://doi.org/10.1016/0021-9517(65)90264-2
  18. Horvath, G. and Kawazoe, K., 'Method for the Calculation of Effective Pore Size Distribution in Molecular Sieve', J. Chem. Eng. Jpn., 16(6), 470-477(1983) https://doi.org/10.1252/jcej.16.470
  19. Cotton, F. A., Wilkinson, H. and Murillo, C. A., in: Advanced Inorganic chemistry, Wiley, New York, 150-210(2004)
  20. Cimino, G., Passerini, A. and Toscano, G., 'Removal of Toxic Cations and Cr(VI) from Aqueous Solution by Hazelnut Shell', Water Res., 34(11), 2955-2962(2000) https://doi.org/10.1016/S0043-1354(00)00048-8
  21. Garg, V. K., Gupta, R., Kumar, R. and Gupta, R. K. 'Adsorption of Chromium from Aqueous Solution on Treated Sawdust', Biores. Technol., 92(1), 79-81(2004) https://doi.org/10.1016/j.biortech.2003.07.004
  22. Park, S. J. and Kim, K. D., “Adsorption Behaviors of $CO_{2} and NH_3$ on Chemically Surface-treated Activated Carbons”, J. Colloid Interface Sci., 212(1), 186-189(1999) https://doi.org/10.1006/jcis.1998.6058
  23. Wagner, C. K., Riggs, W. M., Davis, L. E. and Moulder, J. F., Handbook of X-ray Photoelectron spectroscopy, Perkin-Elmer Corp. Norrwalk, 50-110(1979)
  24. Park, S. J. and Jung, W. Y., 'Effect of KOH Activation on the Formation of Oxygen Structure in Activated Carbons Synthesized from Polymeric Precursor', J. Colloid Interface Sci., 250(1), 93-98(2002) https://doi.org/10.1006/jcis.2002.8309
  25. Utrilla, J. R. and Polo, M. S., 'Adsorption of Cr(III) on Ozonised Activated Carbon. Importance of $C\pi$-cation Interactions', Water Res., 37(14), 3335-3340(2003) https://doi.org/10.1016/S0043-1354(03)00177-5
  26. Gregg, S. J. and Sing, K. S. W., Adsorption, surface Area, and Porosity, Academic press, London, 50-100(1982)
  27. Park, S. J., Jang, Y. S., Shim, J. W. and Ryu, S. K., 'Studies on Pore Structures and Surface Functional Groups of Pitch-based Activated Carbon Fibers', J. Colloid Interface Sci., 260(2), 259-264 (2003) https://doi.org/10.1016/S0021-9797(02)00081-4
  28. Park, S. J., in J. P. Hsu(Ed.), Interfacial Forces and Fields: Theory and Applications, Marcel Dekker, New York, 385-440(1999)
  29. Huang, C. P. and Stumm, W., 'Specific Adsorption of Cations on Hydrous $\gamma-Al_{2}O_{3}$', J. Colloid Interface Sci., 43(2), 409-420(1973) https://doi.org/10.1016/0021-9797(73)90387-1