• Title/Summary/Keyword: Micro behavior

Search Result 1,056, Processing Time 0.027 seconds

미소채널 구조를 이용한 탄소 섬유 복합재료 면의 마찰 및 마모 감소 (Reducing the friction and the wear of carbon fiber composites with micro-grooves)

  • 이학구;이대길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.855-859
    • /
    • 2005
  • Carbon fiber polymeric composites have been widely used in bearing materials under high pressure without oil-lubrication due to their self-lubricating characteristics. However, the severe wear of carbon composite surface occurs due to the generation of wear debris when the pressure applied on the composite surface is higher than the critical value of composite surface. In this work, in order to remove wear debris continuously during sliding operation, composite specimens with many micro-grooves on their sliding surfaces were devised. To investigate the effect of wear debris on the tribological behavior of carbon/epoxy composites, dry sliding tests were performed with respect to applied pressure using the composite specimens with and without micro-grooves. From the measurement of friction coefficients and wear rates, a model for the effect of wear debris on the friction and wear of composites was proposed.

  • PDF

모재표면오건에 따른 TiN 박막의 Morphology변화 (The Behavior of TiN Thin Film Growth According to Substrate Surface Conditions in PECVD Process)

  • 노경준;이정일
    • 한국결정학회지
    • /
    • 제3권1호
    • /
    • pp.53-66
    • /
    • 1992
  • Extensive research has been perform성 on the property-microstructure-process condition relations of thin films. The various proposed models are mainly based on physical vapor deposition processes. Especially the study on the surface condition of substrates in Zone 1 with low surface mobility has not been sufficient. In this study, therefore, we discussed the mochological changes of TiN films deposited by plusma enhanced chemical vapor deposition process with substrates of different composition and micro-rorghness, and compared it with the Structure Zone Model. We could find out that the growth rate of films increased and micro-grain size decreased with the increase in micro-roughness, but it does not improve the mechanical properties because of many imperfections like voids, micro-cracks, stacking faults, etc. This means that, in these deposition conditions, the increase in shadowing diffect is more effective than the increase in nucleation sites on the growth of films due to the increase in substrate roughness.

  • PDF

미소 표면 결함에서 발생하는 초기 균열의 거동에 미치는 응력장의 영향 (The Effects of Stress Fields on Behavior of Primary Cracks Initiated at Micro Surface Defects)

  • 김진봉;김만근
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.25-32
    • /
    • 1999
  • This study has been performed to investigate the stress distribution around defects that behave as stress concentrators. Besides, the effect of stress interaction effects on the initiation of primary cracks were also investigated by rotary bending fatigue tests which were performed with specimens drilled micro surface defects and the stress distribution was analyzed using Finite Element Method. In addition, the stress interaction effects around defects and cracks were investigated by comparing the results of experiments and F.E.M. The results obtained are summarized as follows ; 1) Area which slip and micro cracks initiated at micro surface defects is between the maximum shear stress points and this area is over than ${\pm}30^{\circ}$ from the maximum stress point along the defect edge. 2) The stress interaction effect for the small size defect is larger than that of large size defect when the interval between them is near 3) Interval which there is no shear stress interaction effect analyzed by F.E.M. is larger than that of experimental results.

  • PDF

複合組織鋼 의 破斷延性 에 미치는 塑性拘束 에 의한 內部應力 의 영향 (Effect of Internal Stress due to Plastic Costraint On Fracture Ductility of Dual Phase Steel)

  • 김정규
    • 대한기계학회논문집
    • /
    • 제7권2호
    • /
    • pp.123-129
    • /
    • 1983
  • The effect of the micro-internal stress which is induced in the ferrite grain by plastic constraint, on fracture behavior was investigated. The specimen used has combined microstructure with matrix of ferrite encapsulated by second phase of martensite. The micro-internal stress in the ferrite grain was estimated using a simple mechanical model, and its effect on micro and macro fracture behaviors was discussed. The results obtained are summarized as follows; The micro-internal stress promotes the formation of cleavage cracks in the ferrite during deformation. Consequently, it was concluded that the internal stress is one of the significant factors which cause the fracture ductility to decrease.

마이크로 Groove에서 액적충돌에 대한 수치적 연구 (A Numerical Study on Droplet Deposition in a Micro-Groove)

  • 이우림;서영호;손기헌
    • 대한기계학회논문집B
    • /
    • 제33권10호
    • /
    • pp.789-796
    • /
    • 2009
  • Microdroplet deposition in a micro-groove is studied numerically. The droplet shape is determined by a level-set method which is improved by incorporating a sharp-interface modeling technique for accurately enforcing the matching conditions at the liquid-gas interface and the no-slip and contact angle conditions at an immersed solid surface. The computations are carried out to investigate the droplet behavior derived by the interfacial characteristics between the liquid-gas-solid phases. The effects of contact angle, impact velocity and groove geometry on droplet deposition in a micro-groove are quantified.

3.0 T MRI 환경에서 마이크로비드를 이용한 서브복셀 추적에 관한 수치해석적 연구 (Numerical Study on the Sub-Voxel Tracking Using Micro-Beads in a 3.0 T MRI)

  • 한병희;이수열
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권1호
    • /
    • pp.102-107
    • /
    • 2007
  • In molecular imaging studies via magnetic resonance imaging, in vivo cell tracking is an important issue for the observation of cell therapy or disease behavior. High resolution imaging and longitudinal study are necessary to track the cell movement. Since the field inhomogeneity extends over several voxels, we have performed the numerical analysis using the sub-voxel method dividing a voxel of MR image into several elements and the information about the field inhomogeneity distribution around the micro-beads. We imbedded ferrite-composite micro-beads with the size of $20-150{\mu}m$ in the subject substituted for cells to induce local field distortion. In the phantom imaging with the isotropic voxel size of $200{\mu}m^3$, we could confirm the feasibility of sub-voxel tracking in a 3.0 T MRI.

초소형 밀폐형 이상 써모싸이폰 기포의 거동에 관한 해석적인 연구 (Analytical Study on the Behavior of the Bubble in the Micro Two-Phase Closed Thermosyphon)

  • 이윤표;이영수;이영
    • 설비공학논문집
    • /
    • 제5권2호
    • /
    • pp.85-93
    • /
    • 1993
  • The rise of a large gas bubble or slug in a Micro Two-Phase Closed Thermosyphon with a thin wire insert has been analiged by the potential flow theory. The effect of the interfacial surface tension is explicitly accounted by application of the Kelvin-Laplace equation and solved for the bubble shape. The solution is expressed in terms of the Stokes stream function which consists of an infinite series of Bessel functions. The conditions of the bubble movement in a Micro Two-Phase Closed Thermosyphon were theoretically ascertained.

  • PDF

Slip flow 영역에서의 미소채널 내 열전달 및 유동에 관한 수치적 연구 (A Numerical Study of Heat transfer and Flow Analysis for a Micro-channel in The Slip Flow Regime)

  • 정수인;김귀순;강범수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.391-394
    • /
    • 2006
  • In this paper, the thermal lattice Boltzmann method(TLBM) proposed by Guo et al.(2002) is applied to analyze the forced convective flow and heat transfer of 2-D micro channel. Nonequilibrium extrapolation boundary condition is adopted to simulate the velocity and temperature behavior at wall boundaries. Numerical results obtained by the present study give a good prediction of the micro fluidic characteristics with thermal effects.

  • PDF

미세 핫엠보싱 공정에서 폴리머의 유동특성 (Flow Behaviors of Polymers in Micro Hot Embossing Process)

  • 반준호;신재구;김병희;김헌영
    • 한국정밀공학회지
    • /
    • 제22권8호
    • /
    • pp.159-164
    • /
    • 2005
  • The Hot Embossing Lithography(HEL) as a method fur the fabrication of the nanostructure with polymer is becoming increasingly important because of its simple process, low cost, high replication fidelity and relatively high throughput. In this paper, we carried out experimental studies and numerical simulations in order to understand the viscous flow of the polymer (PMMA) film during the hot embossing process. To grasp the characteristics of the micro patterning rheology by process parameters (embossing temperature, pressure and time), we have carried out various experiments by using the nickel-coated master fabricated by the deep RIE process and the plasma sputtering. During the hot embossing process, we have observed the characteristics of the viscoelastic behavior of polymer. Also, the viscous flow during the hot embossing process has been simulated by the continuum based FDM(Finite Difference Method) analysis considering the micro effect, such as a surface tension and a contact angle.

신개념 태양전지 세정용 오존마이크로 버블에 관한 연구 (A Study on Ozone Micro Bubble Effects for Solar Cell Wafer Cleaning)

  • 윤종국;구경완
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.94-98
    • /
    • 2012
  • The behavior of ozone micro bubble cleaning system was investigated to evaluate the solution as a new method of solar cell wafer cleaning in comparison with former conventional RCA cleaning. We have developed the ozone dissolution system in the ozonated water for more efficient cleaning conditions. The optimized cleaning conditions for solar cell wafer process were 10 ppm of ozone concentration and 12 minutes in cleaning periods, respectively. We have confirmed the cleaning reliability and cell efficiencies after ozone micro bubble cleaning. Using this new cleaning technology, it was possible to obtain higher efficiency, higher productivity, and fast tact time for applying cleaning in the fields on bare ingot wafer, LED wafers as well as the solar cell wafer.