DOI QR코드

DOI QR Code

Numerical Study on the Sub-Voxel Tracking Using Micro-Beads in a 3.0 T MRI

3.0 T MRI 환경에서 마이크로비드를 이용한 서브복셀 추적에 관한 수치해석적 연구

  • 한병희 (경희대학교 동서의료공학과) ;
  • 이수열 (경희대학교 동서의료공학과)
  • Published : 2007.02.28

Abstract

In molecular imaging studies via magnetic resonance imaging, in vivo cell tracking is an important issue for the observation of cell therapy or disease behavior. High resolution imaging and longitudinal study are necessary to track the cell movement. Since the field inhomogeneity extends over several voxels, we have performed the numerical analysis using the sub-voxel method dividing a voxel of MR image into several elements and the information about the field inhomogeneity distribution around the micro-beads. We imbedded ferrite-composite micro-beads with the size of $20-150{\mu}m$ in the subject substituted for cells to induce local field distortion. In the phantom imaging with the isotropic voxel size of $200{\mu}m^3$, we could confirm the feasibility of sub-voxel tracking in a 3.0 T MRI.

Keywords

References

  1. J. W. M. Bulte, and D. L. Kraitchman, 'Iron oxide MR contrast agents for molecular and cellular imaging,' NMR Biomed., vol.17, pp.484-499, 2004 https://doi.org/10.1002/nbm.924
  2. J. W. M. Bulte, S. -C. Zhang, P. van Gelderen, V. Herynek, E. K. Jordan, I. D. Duncan, and J. A. Frank, 'Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination,' in Proc. Natl. Acad. Sci., vol.96, 1999, pp.15256-15261 https://doi.org/10.1073/pnas.96.26.15256
  3. J. W. M. Bulte, T. Douglas, B. Witwer, S. C, Zhang, E. Strable, B. K. Lewis, H. Zywicke, B. Miller, P. van Gelderen, B. M. Moskowitz, I. D. Duncan, and J. A. Frank, 'Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells,' Nat. Biotechnol., vol.19, pp.1141-1147, 2001 https://doi.org/10.1038/nbt1201-1141
  4. M. Modo, D. Cash, K. Mellodew, S. C. R. Williams, S. E. Fraser, T. J. Meade, J. Price, and H. Hodges, 'Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging,' NeuroImage, vol.17, pp.803-811, 2002 https://doi.org/10.1016/S1053-8119(02)91194-8
  5. Y. M. Huh, Y. Jun, H. T. Song, S. Kim, J. Choi, J. H. Lee, S. Yoon, K. S. Kim, J. S. Shin, J. S. Suh, and J. Cheon, 'In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals,' J. Am. Chem. Soc., vol.127, pp.12387-12391, 2005 https://doi.org/10.1021/ja052337c
  6. P. Smirnov, E. Lavergne, F. Gazeau, M. Lewin, A. Boissonnas, B. T. Doan, B. Gillet, C. Combadière, B. Combadière, and O. Clément, 'In vivo cellular imaging of lymphocyte trafficking by MRI: a tumor model approach to cell-based anticancer therapy,' Magn. Reson. Med., vol.56, pp.498-508, 2006 https://doi.org/10.1002/mrm.20996
  7. E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan, Magnetic resonance imaging physical principles and sequence design: New York, USA: John Wiley & Sons, 1999, pp.741-779
  8. C. H. Cunningham, T. Arai, P. C. Yang, M. V. McConnell, J. M. Pauly, and S. M. Conolly, 'Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles,' Magn. Reson. Med., vol.53, pp.999-1005, 2005 https://doi.org/10.1002/mrm.20477
  9. C. Heyn, C. V. Bowen, B. K. Rutt, and P. J. Foster, 'Detection threshold of single SPIO-labeled cells with FIESTA,' Magn. Reson. Med., vol.53, pp.312-320, 2005 https://doi.org/10.1002/mrm.20356
  10. O. Zurkiya and X. Hu, 'Off-resonance saturation as a means of generating contrast with superparamagnetic nanoparticles,' Magn. Reson. Med., vol.56, pp.726-732, 2006 https://doi.org/10.1002/mrm.21024
  11. B. M. Müller-Bierl, H. Graf, P. L. Pereira, and F. Schick, 'Numerical simulations of intra-voxel dephasing effects and singal voids in gradient echo MR imaging using different sub-grid sizes,' Magn. Reson. Mater. Phy., vol.19, pp.88-95, 2006 https://doi.org/10.1007/s10334-006-0031-5
  12. J. Pintaske, B. Müller-Bierl, and F. Schick, 'Effect of spatial distribution of magnetic diploes on Larmor frequency distribution and MR signal decay a numerical approach under static dephasing conditions,' Magn. Reson. Mater. Phy., vol.19, pp.46-53, 2006 https://doi.org/10.1007/s10334-006-0026-2
  13. http://en.wikipedia.org/wiki/Magnetic_susceptibility
  14. http://www.kayelaby.npl.co.uk/general_physics/
  15. P. Gillis, F. Moiny, and R. A. Brooks, 'On T2-shortening by strongly magnetized spheres: a partial refocusing model,' Magn. Reson. Med., vol. 47, pp.257-263, 2002 https://doi.org/10.1002/mrm.10059
  16. D. A. Yablonskiy and E. M. Haacke, 'On theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime,' Magn. Reson. Med., vol. 32, pp.749-763, 1994 https://doi.org/10.1002/mrm.1910320610