• Title/Summary/Keyword: Micro Probe

Search Result 340, Processing Time 0.029 seconds

Non-Destructive Evaluation of Material Properties of Nanoscale Thin-Films Using Ultrafast Optical Pump-Probe Methods

  • Kim, Yun-Young;Krishnaswamy, Sridhar
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.115-121
    • /
    • 2012
  • Exploration in microelectromechanical systems(MEMS) and nanotechnology requires evaluation techniques suitable for sub-micron length scale so that thermal and mechanical properties of novel materials can be investigated for optimal design of miro/nanostructures. The ultrafast optical pump-probe technique provides a contact-free and non-destructive way to characterize nanoscale thin-films, and its ultrahigh temporal resolution enables the study of heat-transport phenomena down to a sub-picosecond regime. This paper reviews the principle of optical pump-probe technique and introduces its application to the area of micro/nano-NDE.

An Experimental Study on the Effect of Surface Roughness on Nanoscale Adhesion (표면 거칠기가 나노 응착력에 미치는 영향에 관한 실험적 연구)

  • Yang Seung Ho
    • Tribology and Lubricants
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Effect of Surface roughness on nanoscale adhesion was studied experimentally by using colloidal probe technique. Glass micro balls having the radius of $3.3\~17.4{\mu}m$ were glued at the end of AFM cantilevers to prepare colloidal probes. Adhesion force between the colloidal probe and Si-wafer was measured using pull-off force measuring method. Results showed that the measured adhesion forces are not the function of the radius of the glued balls because the ball surfaces are rough. It is also found that roughness parameters such as $R_a,\;R_q\;and\;R_{max}$ do not have important role on nanoscale adhesion. In order to find the effect of surface roughness on nanoscale adhesion, the bearing areas were extracted from the measured topography of glued balls. After normalizing the measured adhesion force with the bearing area, it was found that the normalized adhesion force kept constant as function of the radius of glued ball.

Fabrication and Characterization of Thermally Actuated Bimorph Probe for Living Cell Measurements with Experimental and Numerical Analysis

  • Cho Young-Hak;Kang Beom-Joon;Hong Seok-Kwan;Kang Jeong-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.297-309
    • /
    • 2006
  • This paper deals with a novel structure for single-cell characterization which makes use of bimorph micro thermal actuators combined with electrical sensor device and integrated microfluidic channel. The goal for this device is to capture and characterize individual biocell. Quantitative and qualitative characteristics of bimorph thermal actuator were analyzed with finite element analysis methods. Furthermore, optimization for the dimension of cantilevers and integrated parallel probe systems with microfluidic channels is able to be realized through the virtual simulation for actuation and the practical fabrication of prototype of probes. The experimental value of probe deflection was in accordance with the simulated one.

Fabrication of High Aspect Ratio Micro Structure for fine pitch probe production (Fine pitch probe 제작을 위한 고세장비 마이크로 구조물 제작)

  • Lee, S.I.;Kim, W.K.;Pyo, C.R.;Kim, D.Y.;Yang, S.J.;Ko, K.H.;Kim, H.J.;Jeon, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.356-359
    • /
    • 2007
  • Continuing improvements in integrated circuit chip density and functionality have mostly contributed toward a very large-scale integrated circuit(VLSI) and display device. In order to test (pass or fail) all of the high integrated semiconductor chip and display device, fine pitch probes are used. Fine pitch probes are manufactured by electroforming process of a Ni alloy in an electrolytic bath. In this paper, we expect that the electric field in bath with the Finite Element Method and applying the FEM result. So, we can obtained the probes that have high aspect ratio of 10 : 1

  • PDF

Fabrication of Micro/Nano-patterns using MC-SPL(Mechano-Chemical Scanning Probe Lithography) Process

  • Sung, In-Ha;Kim, Dae-Eun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.5
    • /
    • pp.22-26
    • /
    • 2003
  • In this work, a new non-photolithographic micro-fabrication technique is presented. The motivation of this work is to overcome the demerits of the most commonly used photolithographic techniques. The micro-fabrication technique presented in this work is a two-step process which consists of mechanical scribing followed by chemical etching. This method has many advantages over other micro-fabrication techniques since it is simple, cost-effective, rapid, and flexible. Also, the technique can be used to obtain a metal structure which has sub-micrometer width patterns. In this paper, the concept of this method and its application to microsystem technology are described.

Fabrication ofMicro/Nano-patterns using MC-SPL (Mechano-Chemical Scanning Probe Lithography) Process (미세탐침기반 기계-화학적 리소그래피공정에 의한 마이크로/나노패턴 제작)

  • 성인하;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.228-233
    • /
    • 2002
  • In this work, a new non-photolithographic micro-fabrication technique is presented. The motivation of this work is to overcome the demerits of the most commonly used photolithographic techniques. The micro-fabrication technique presented in this work is a two-step process which consists of mechanical scribing followed by chemical etching. This method has many advantages over other micro-fabrication techniques since it is simple, cost-effective, rapid, and flexible. Also, the technique can be used to obtain a metal structure which has sub-micrometer width patterns. In this paper, the concept of this method and its application to microsystem technology are described.

Numerical Analysis of the Flow Characteristics in the Nano Fountain-Pen Using Membrane Pumping (박막펌핑을 이용한 Nano Fountain-Pen의 유동 특성에 관한 수치적 연구)

  • Lee, J.H.;Lee, Y.K.;Lee, S.H.;Kim, Hun-Mo;Kim, Youn-J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.19-24
    • /
    • 2006
  • Nano fountain-pen is a novel device to make the constant patterning in micro process using new designed probe. Fountain-pen nanolithography (FPN) is applied for constant supply of liquid in conjunction of patterns and surface variation in the micro process. In this study, nuo fountain-pen is composed with reservoir, micro channels, tip and scondary chamber. Instead of traditional method only using capillary force, liquid can be definitely and exactly injected with membrane pumping by the repulse force of tip. It is dfficult to perform experiments in the micro range so that we carried out a numerical analysis for internal flow, using a commercial code, FlUENT, The velocity, pressure and flow rate are obtained under laminar, unsteady, three-dimensional incompressible flow with no-slip condition, and results are graphically described.

A study of Pulse EMM for Invar alloy (펄스 전압을 이용한 인바 합금의 미세 전해가공)

  • 김원묵;백승엽;이은상;탁용석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.560-563
    • /
    • 2004
  • Invar is a compound metal of Fe-Ni system and contain 36% Ni. The most distinction characteristic of Invar is the coefficient of thermal expansion is 1.0 10$^{-6}$ /$^{\circ}C$. That is a tenth of general steel material. This low thermal expansion characteristic of Invar is applied to the missile, aircraft, monitor CRT and frontier display's shadow mask such as FED and OLED. The usage of the Invar shadow mask for display is increasing due to the requirement of larger size and flatness monitor. The Invar shadow mask is machined by two ways electro-forming and laser now. However the electro-forming takes a too long time and the laser machining is accompanied with Burr. In this study, PEMM(pulse electrochemical micro machining) is conducted to machine the micro hole to the Invar and 80${\mu}{\textrm}{m}$ hole was machined.

  • PDF

Comparative Quantification of Contractile Force of Cardiac Muscle Using a Micro-mechanical Force Sensing System

  • Ryu, Seok-Chang;Park, Suk-Ho;Kim, Deok-Ho;Kim, Byung-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1179-1182
    • /
    • 2005
  • To facilitate the cell based robot research, we presented a micro-mechanical force measurement system for the biological muscle actuators, which utilize glucose as a power source for potential application in a human body or blood vessels. The system is composed of a micro-manipulator, a force transducer with a glass probe, a signal processor, an inverted microscope and video recoding system. Using this measurement system, the contractile force and frequency of the cardiac myocytes were measured in real time and the magnitude of the contractile force of each cardiac myocyte on a different condition was compared. From the quantitative experimental results, we estimated that the force of cardiac myocytes is about $20{\sim}40\;{\mu}$N, and showed that there is difference between the control cells and the micro-patterned cells.

  • PDF

Development of Optical Probe to Inspect Micron Scale Part in Micro-Factory (Micro-Factory 공정간 마이크로 부품 검사 프로브 개발)

  • Kim Geehong;Lee D.W.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.424-428
    • /
    • 2005
  • This paper shows a non-contact optical method to inspect micron scale parts which will be manufactured in micro-factory system. This inspection system should have some characteristics like a small size, flexibility, and high measuring speed. In the viewpoint of measuring capabilities, it also has resolution under micron scale with measuring range over millimeter scale. Two methods will be presented in this paper, one is Moire and the other is white-light scanning interferometry. Also some experimental results will be presented to show the possibilities of the proposed inspection system.

  • PDF