• Title/Summary/Keyword: Micro Drilling

Search Result 145, Processing Time 0.022 seconds

Effects of the Tagging methods on the Growth and Survival of Abalone Juvenile, Haliotis discus hannai (전복, Haliotis discus hannai 치패의 성장과 생존에 미치는 표지의 영향)

  • Kim Bong Seok;Lee Yun Ho;Park Doo Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.282-288
    • /
    • 2002
  • This study was carried out to investigate the optimum tagging method of the abalone juvenile, Haliotis discus hannai in indoor culture system from May 2000 to January2001. Tagging methods were shell drilling, copper-wire tagging at the respiratory pore and nut gluing on the shell. The attachment rates of the shell showed high in the 2- and 3 cm bolt-nut tagged groups, about over $89.5\%$, whereas shell drilling groups on the shell were about $18.5\%$. The internal coating rates tagged with bolt-nut were over $96.6\%$, while those tagged with copper wire were less than $17.1\%$. Growths in the all marked and tagged experimental groups comparing with control groups were not significantly different (p>0,05). Survivals in all tagging groups except shell drilling and nut gluing groups in the 5 cm abalone were over $95\%, Accordingly, all juvenile groups were not affected by the tagging methods in terms of the growth and survival on the abalones. Based on these results, the micro bolt-nut tagging was the most effective method in abalone.

Velocity-porosity relationships in oceanic basalt from eastern flank of the Juan de Fuca Ridge: The effect of crack closure on seismic velocity (Juan do Fuca 해저산맥의 동쪽 측면으로부터 얻은 해양성 현무암의 속도와 공극률의 관계: 균열닫힘이 탄성파 속도에 미치는 영향)

  • Tsuji, Takeshi;Iturrino, Gerardo J.
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.41-51
    • /
    • 2008
  • To construct in situ velocity-porosity relationships for oceanic basalt, considering crack features, P- and S-wave velocity measurements on basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge were carried out under confining pressures up to 40 MPa. Assuming that the changes in velocities with confining pressures are originated by micro-crack closure, we estimated micro-crack aspect ratio spectra using the Kuster-$Toks{\ddot{o}}z$ theory. The result demonstrates that the normalised aspect ratio spectra of the different samples have similar characteristics. From the normalised aspect ratio spectrum, we then constructed theoretical velocity-porosity relationships by calculating an aspect ratio spectrum for each porosity. In addition, by considering micro-crack closure due to confining pressure, a velocity-porosity relationship as a function of confining pressure could be obtained. The theoretical relationships that take into account the aspect ratio spectra are consistent with the observed relationships for over 100 discrete samples measured at atmospheric pressure, and the commonly observed pressure dependent relationships for a wide porosity range. The agreement between the laboratory-derived data and theoretically estimated values demonstrates that the velocity-porosity relationships of the basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge, and their pressure dependence, can be described by the crack features (i.e. normalised aspect ratio spectra) and crack closure.

A Study on UV Laser Ablation for Micromachining of PCB Type Substrate (다층 PCB 기판의 미세 가공을 위한 UV레이저 어블레이션에 관한 연구)

  • 장원석;김재구;윤경구;신보성;최두선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.887-890
    • /
    • 1997
  • Recently micromachining using DPSSL(Diode Pumped Solid State Laser) with 3rd harmonic wavelength is actively studied in laser machining area. Micromachining using DPSSL have outstanding advantages as UV source comparing with excimer laser in various aspect such a maintenance cost, maskless machining, high repetition rate and so on. In this study micro-drilling of PCB type substrate which consists of Cu-PI-Cu layer was performed using DPSS Nd:YAG laser(355nm, wavelength) in vector scanning method. Experimental and numerical method(Matlab simulation, FEM) are used to optimize process parameter and control machining depth. The man mechanism of this process is laser ablation. It is known that there is large gap between energy threshold of copper and that of PI. Matlab simulation considering energy threshold of material is performed to effect of duplication of pulse and FEM thermal analysis is used to predict the ablation depth of copper. This study could be widely used in various laser micromachining including via hole microdrilling of PCB, and micromachining of semiconductor components, medical parts and printer nozzle and so on.

  • PDF

Analysis of machining characteristics of thermogravimetric analysis and high-power density electron beam through the development of vaporized amplification sheets according to metal powder (Metal Powder에 따른 증기화 증폭 시트의 개발을 통한 열 중량 분석 및 고출력 전자빔의 가공 특성 분석)

  • Kim, Hyun-Jeong;Jung, Sung-Taek;Lee, Joo-Hyung;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.56-62
    • /
    • 2020
  • An electron beam was used to mainly utilize for polishing, finishing, welding, a lithography process, etc. Due to the high technical level of difficulty of high-power density electron beam, it is difficult to secure related technologies. In this study, research was carried out to improve the machinability by developing the vaporized amplification sheets to realize the electron beam drilling technology. Their vaporized amplification sheets were analyzed by using the measurement of chemical and composition, which is such as TGA, SEM. We analyzed micro-hole processing using a microscope. Also, the thermal characteristics of vaporized amplification sheets are highly significant for applying to high-power density electron beam technique. So, we finished the vaporized amplification sheets according to the process conditions and analyzed it according to the machining conditions of the electron beam. It was confirmed that the effect on the experimental results differs depending on the influence of the metal powder contained in the developed material.

Surface Transformation Hardening for Rod-shaped Carbon Steels by High Power Diode Laser (고출력 다이오드 레이저(HPDL)를 이용한 탄소강 환봉의 표면변태경화)

  • Kim, Jong-Do;Kil, Byung-Lea;Kang, Woon-Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.961-969
    • /
    • 2007
  • The laser material processing has replaced a conventional material processing such as a welding, cutting, drilling and surface modification and so on. LTH(Laser Transformation Hardening) is one branch of the laser surface modification process. A lot of energy is needed for the LTH process to elevate workpiece surface to temperature of the austenite transformation($A_3$), which results from utilizing a beam with a larger size and lower power intensity comparatively. The absorptivity of the laser energy with respect to material depends on the wave length of a beam. This study is related to the surface hardening for the rod-shaped carbon steel by the high power diode laser(HPDL) whose beam absorptivity is better than conventional types of lasers such as $CO_2$ or Nd:YAG laser. Because a beam proceeds on the rotating specimen the pretreated hardened-phase can be tempered and softened by the overlapping between hardened tracks. Accordingly, the longitudinal hardness measurement and observation of the micro structure was carried out for an assessment of the hardening characteristics. In addition, a hardening characteristics as a hardenability of materials was compared in the point of view of the hardness distribution and hardening depth and width.

Leg Amputation due to Buerger's Disease: Management with Combined Korean Medicine

  • Won, Eun Sol;Lee, Hyun;Ryu, Hwa Yeon;Ku, Yong Ho;Jung, Ga Hyeon;Park, Chae Hyun;Kang, Jae Hui
    • Journal of Acupuncture Research
    • /
    • v.38 no.4
    • /
    • pp.325-330
    • /
    • 2021
  • In this Case Report, a patient with Buerger's disease who had a leg amputation below his lower right knee and a vascular bypass of right leg, developed a wound caused by his prosthetic leg and subjective discomfort. The patient received skin flap surgery but the wound did not heal properly. He was admitted to the Korean Medicine Hospital where his wound, right leg coldness, and phantom pain were treated with combined Korean medicine. The patient was hospitalized again where he underwent micro-drilling surgery. The patient was re-admitted to the Korean Medicine Hospital where he received combined Korean medicine treatment (CKMT) and carbon arc light treatment (CALT) for his wound, leg coldness, stiffness, and hypoplasia. The temperature of his right leg increased, the numeric rating scale score for assessing pain fell from 5 to 1.5, and subjective discomfort was reduced (< 20%) suggesting this may be an effective treatment.

A Study on Practicalization of Low Vibration New KINRECKER-II (미진동 발파용 New KINECKER-II 실용화에 관한 연구)

  • Jang, Seung-Ho;Park, Hee-Won;Lim, Jung-Hyuk;Lee, Chang-Yeop;Ahn, Bong-Do;Kang, Dae-Woo;Lee, Ha-Young
    • Explosives and Blasting
    • /
    • v.35 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • Mountain and hill areas occupy by more than 70% in South Korea and Rock drilling should be applied in order to reduce noisy & vibration from massive civil engineering business such as road expansion, high-way construction, subway construction and construction of site renovation such as a newly-built & re-development of apartment, newly-built of high-rising building in downtown area. As Blasting noise & vibration such as vibration, noise, fly rock etc caused by blasting operation from large small scale construction occurs, neighboring residents who demand the compensation file a civil complaint so that the business reach a deadlock. As the excavation method for these areas, There are blasting of micro-vibration, mechanical excavation method(Rock splitter, Breaker etc), similar blasting method(plasma, gel fragmentation etc) to date. In this study, we are trying to find the feature & performance which get improved economic feasibility & construct ability through improving sympathetic detonation of New KINECKER-I used in blasting of micro-vibration & formulation and would provide convenience for use by introducing standard blasting pattern & construction method. Also, checked and confirmed all the blasting with connecting cap has been cleary detonated.

A Study on the Development of Multifuntional Real-Time Inclination and Azimuth Measurement System (다용도 실시간 경사각과 방위각 연속 측정 시스템 개발연구)

  • Kim, Gyuhyun;Cho, Sung-Ho;Jung, Hyun-Key;Lee, Hyosun;Son, Jeong-Sul
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.588-601
    • /
    • 2013
  • In geophysics and geophysical exploration fields, we can use information about inclination and azimuth in various ways. These include borehole deviation logging for inversion process, real-time data acquisition system, geophysical monitoring system, and so on. This type of information is also necessarily used in the directional drilling of shale gas fields. We thus need to develop a subminiature, low-powered, multi-functional inclination and azimuth measurement system for geophysical exploration fields. In this paper, to develop real-time measurement system, we adopt the high performance low power Micro Control Unit (made with state-of-the-art Complementary Metal Oxide Semiconductor technology) and newly released Micro Electro Mechanical Systems Attitude Heading Reference System sensors. We present test results on the development of a multifunctional real-time inclination and azimuth measurement system. The developed system has an ultra-slim body so as to be installed in 42mm sonde. Also, this system allows us to acquire data in real-time and to easily expand its application by synchronizing with a depth encoder or Differential Global Positioning System.

Histomorphometric analysis of microcrack healing after the installation of mini-implants

  • Shin, Soobin;Park, Pan-Soo;Baek, Seung-Hak;Yang, Il-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • Purpose: The goal of this study was to investigate the histomorphometric characteristics of the healing process of microcracks in the cortical bone after the installation of mini-implants (MIs). Methods: Self-drilling MIs were inserted into the tibial diaphysis of twelve adult male New Zealand rabbits. Four MIs per rabbit were placed randomly. The animals were divided into four groups according to the length of the healing period: group A was sacrificed immediately, group B was sacrificed after one week, group C was sacrificed after two weeks, and group D was sacrificed after four weeks. Cortical bone thickness was measured using micro-computed tomography, and histomorphometric analyses of the cumulative length of the microcracks (CLCr) and the total number of microcracks (NCr) were performed using hematoxylin and eosin staining. Results: The microcracks were radially and concentrically aligned in the peri-MI bone. The CLCr decreased significantly one week after the surgery, mainly due to healing of the concentrically aligned microcracks. The CLCr showed another significant decrease from two weeks after the surgery to four weeks after the surgery, mainly reflecting healing of the radially aligned microcracks. A statistically significant decrease in the NCr occurred as the microcracks healed from zero weeks to two weeks. However, no significant difference in the NCr was found between groups C and D. Conclusions: In order to improve the primary stability of MIs, delayed loading and a healing period of a certain length are recommended to ensure the optimal healing of microcracks and bone remodeling.

Modern Laser Technology and Metallurgical Study on Laser Materials Processing

  • Kutsuna, Muneharu
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.561-569
    • /
    • 2002
  • Laser has been called a "Quantum Machine" because of its mechanism of generation since the development on July 7,1960.by T.H.Maiman. We can now use this machine as a tool for manufacturing in industries. At present, 45kW CO2 laser, 10kW Nd:YAG laser, 6kW LD pumped YAG laser and 4kW direct diode laser facilities are available for welding a heavy steel plate of 40mm in thickness and for cutting metals at high speed of 140m/min. Laser Materials Processing is no longer a scientific curiosity but a modern tool in industries. Lasers in manufacturing sector are currently used in welding, cutting, drilling, cladding, marking, cleaning, micro-machining and forming. Recently, high power laser diode, 10kW LD pumped YAG laser, 700W fiber laser and excimer laser have been developed in the industrialized countries. As a result of large numbers of research and developments, the modem laser materials processing has been realized and used in all kinds of industries now. In the present paper, metallurgical studies on laser materials processing such as porosity formation, hot cracking and the joint performances of steels and aluminum alloys and dissimilar joint are discussed after the introduction of laser facilities and laser applications in industries such as automotive industry, electronics industry, and steel making industry. The wave towards the use of laser materials processing and its penetration into many industries has started in many countries now. Especially, development of high power/quality diode laser will be accelerate the introduction of this magnificent tool, because of the high efficiency of about 50%, long life time and compact.

  • PDF