Browse > Article

Velocity-porosity relationships in oceanic basalt from eastern flank of the Juan de Fuca Ridge: The effect of crack closure on seismic velocity  

Tsuji, Takeshi (Department of Civil and Earth Resources Engineering, Kyoto University, Katsura Campus)
Iturrino, Gerardo J. (Lamont-Doherty Earth Observatory of Columbia University)
Publication Information
Geophysics and Geophysical Exploration / v.11, no.1, 2008 , pp. 41-51 More about this Journal
Abstract
To construct in situ velocity-porosity relationships for oceanic basalt, considering crack features, P- and S-wave velocity measurements on basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge were carried out under confining pressures up to 40 MPa. Assuming that the changes in velocities with confining pressures are originated by micro-crack closure, we estimated micro-crack aspect ratio spectra using the Kuster-$Toks{\ddot{o}}z$ theory. The result demonstrates that the normalised aspect ratio spectra of the different samples have similar characteristics. From the normalised aspect ratio spectrum, we then constructed theoretical velocity-porosity relationships by calculating an aspect ratio spectrum for each porosity. In addition, by considering micro-crack closure due to confining pressure, a velocity-porosity relationship as a function of confining pressure could be obtained. The theoretical relationships that take into account the aspect ratio spectra are consistent with the observed relationships for over 100 discrete samples measured at atmospheric pressure, and the commonly observed pressure dependent relationships for a wide porosity range. The agreement between the laboratory-derived data and theoretically estimated values demonstrates that the velocity-porosity relationships of the basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge, and their pressure dependence, can be described by the crack features (i.e. normalised aspect ratio spectra) and crack closure.
Keywords
velocity-porosity relationship; oceanic basalt; crack aspect ratio; Kuster-$Toks{\ddot{o}}z$ theory; Integrated Ocean Drilling Program;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Berryman, J. G., 1980, Long-wavelength propagation in composite elastic media: Journal of the Acoustical Society of America 68, 1809-1831. doi: 10.1121/1.385171   DOI   ScienceOn
2 Biot, M. A., 1955, Theory of elasticity and consolidation for a porous anisotropic solid: Journal of Applied Physics 26, 115-135
3 Davis, E. E., and Currie, R. G., 1993, Geophysical observations of the northern Juan de Fuca Ridge system: lessons in sea-floor spreading: Canadian Journal of Earth Sciences 30, 278-300   DOI   ScienceOn
4 Kuster, G. T., and Toks¨oz, M. N., 1974, Velocity and attenuation of seismic waves in two-phase media, Part 1. Theoretical formulations: Geophysics 39, 587-606. doi: 10.1190/1.1440450   DOI   ScienceOn
5 Ludwig, R. J., Iturrino, G. J., and Rona, P. A., 1998, Seismic velocityporosity relationship of sulfide, sulfate, and basalt samples from the TAG hydrothermal mound, in P.M. Herzig, S. E. Humphris, D. J. Miller, R. A. Zierenberg, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 158: College Station, TX (Ocean Drilling Program), 313-327
6 Shearer, P. M., 1988, Cracked media, Poisson's ratio and the structure of the upper oceanic crust: Geophysical Journal 92, 357-362. doi: 10.1111/j.1365-246X.1988.tb01149.x   DOI
7 Toksoz, M. N., Cheng, C. H, and Timur, A., 1976, Velocity of seismic waves in porous rocks: Geophysics 41, 621-645. doi: 10.1190/1.1440639   DOI
8 Toksoz, M. N., Johnston, D. H., and Timur, A., 1979, Attenuation of seismic waves in dry and saturated rocks. 1. Laboratory measurements: Geophysics 44, 681-690. doi: 10.1190/1.1440969   DOI   ScienceOn
9 Tompkins, M. J., and Christensen, N. L., 1999, Effect of pore pressure on compressional wave attenuation in a young oceanic basalt: Geophysical Research Letters 26, 1321-1324. doi: 10.1029/1999GL900216   DOI   ScienceOn
10 Cheng, C. H., and Toks¨oz, M.N., 1979, Inversion of seismic velocities for the pore aspect ratio spectrum of a rock: Journal of Geophysical Research 84, 7533-7543   DOI
11 Wilkens, R. H., Christensen, and N. I., Slater, L., 1983, High-pressure seismic studies of Leg 69 and 70 basalts, in J. R. Cann, M. G. Langseth, J. Honnorez, R. P. Von Herzen, and S. M. White, et al., Initial Reports of the Deep Sea Drilling Project 69, 683-686
12 Fisher, A. T., Urabe, T., and Klaus, A., and the Expedition 301 Scientists, 2005, Integrated Ocean Drilling Program, U.S. Implementing Organization Expedition 301, Scientific Prospectus, The hydrogeologic architecture of basaltic oceanic crust: compartmentalization, anisotropy, microbiology, and crustal-scale properties on the eastern flank of Juan de Fuca Ridge
13 Fisher, A. T, and Davis, E. E., 2000, An introduction to the scientific results of Leg 168, in A. T. Fisher, E. E. Davis, and C. Escutia, eds, Proceedings of the Ocean Drilling Program, Scientific Results, 168, College Station TX (Ocean Drilling Program), 3-5
14 Knight, R., and Nolen-Hoeksema, R., 1990, A laboratory study of the dependence of elastic wave velocities on pore scale fluid distribution: Geophysical Research Letters 17, 1529-1532   DOI
15 Birch, F., 1960, The velocity of compressional waves in rocks to 10 kilobars: Journal of Geophysical Research 65, 1083-1102   DOI
16 Fisher, A. T., Becker, K., and Davis, E. E., 1997, The permeability of young oceanic crust east of Juan de Fuca Ridge determined using borehole thermal measurements: Geophysical Research Letters 24, 1311-1314. doi: 10.1029/97GL01286   DOI   ScienceOn
17 Wilkens, R. H., Schultz, D., and Carlson, R. L., 1988, Relationship of resistivity, velocity, and porosity for basalts from downhole well logging measurements in Hole 418A, in M. H. Salisbury and J.H. Scott, et al. Proceedings of the Ocean Drilling Program, Scientific Results 102, 69-78
18 Cerney, B., and Carlson, R. L., 1999, The effect of cracks on the seismic velocities of basalt from site 990, southeast Greenland margin, in H. C Larsen, R. A. Duncan, J. F. Allan, and K. Brooks, eds. Proceedings of the Ocean Drilling Program, Scientific Results 163: College Station, TX (Ocean Drilling Program), 29-35
19 Expedition 301 Scientists, 2005, Site U1301, in A. T. Fisher, T. Urabe, A. Klaus, and the Expedition 301 Scientists, Proceedings of the Integrated Ocean Drilling Program 301, 2005: College Station TX (Integrated Ocean Drilling Program Management International, Inc.), doi: 10.2204/iodp.proc.301.106
20 Tsuji, T., and Yamaguchi, H., 2007, Improvement of Mineral Mapping Method: Application of Neural Network System to Elemental Maps by Electron Microprobe Analyzer, Proceedings of the 117th SEGJ Conference, 1-4
21 Hyndman, R. D., 1979, Poisson's ratio in the oceanic crust: a review Tectonophysics 59, 321-333. doi: 10.1016/0040-1951(79)90053-2   DOI   ScienceOn
22 Wilkens, R. H., Fryer, G. J., and Karsten, J., 1991, Evolution of porosity and seismic structure of upper oceanic crust: importance of aspect ratios: Journal of Geophysical Research 96, 17891-17995   DOI
23 Wilkens, R. H., and Salisbury, M. H., 1996, Microstructure and physical properties of samples from Hole 896A, in J. C. Alt, H. Kinoshita, L. B. Stokking, and P. J. Michael, et al. Proceedings of the Ocean Drilling Program, Scientific Results 148B, 365-374
24 Mavko, G., Mukerji, T., and Dvorkin, J., 1998, The Rock Physics Handbook, Tools for Seismic Analysis of Porous Media, Cambridge University Press
25 Swift, S. A., Lizarralde, D., Stephen, R. A., and Hoskins, H., 1998, Velocity structure in upper ocean crust at Hole 504B from vertical seismic profiles: Journal of Geophysical Research 103, 15361-15376. doi: 10.1029/98JB00766   DOI
26 Wepfer,W.W., and Christensen, N. I., 1991, Q structure of the oceanic crust: Marine Geophysical Researches 99, 3043-3056
27 Alt, J. C., Honnorez, J., Laverne, C., and Emmermann, R., 1986, Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project hole 504B: mineralogy, chemistry, and evolution of seawater-basalt interactions: Journal of Geophysical Research 91, 10309-10335   DOI
28 Johnston, D. H., Toksoz, M. N., and Timur, A., 1979, Attenuation of seismicwaves in dry and saturated rocks. II. Mechanisms Geophysics 44, 691-711. doi: 10.1190/1.1440970   DOI   ScienceOn
29 Walsh, J. B., 1966, Seismic attenuation in rock due to friction: Journal of Geophysical Research 71, 2591-2599   DOI
30 Berryman, J. G., and Berge, P. A., 1996, Critique of two explicit schemes for estimating elastic properties of multiphase composites: Mechanics of Materials 22, 149-164. doi: 10.1016/0167-6636(95)00035-6   DOI   ScienceOn
31 Hudson, J. A., 1981,Wave speeds and attenuation of elasticwaves in material containing cracks: Geophysical Journal of the Royal Astronomical Society 64, 133-150   DOI