DOI QR코드

DOI QR Code

A Study on the Development of Multifuntional Real-Time Inclination and Azimuth Measurement System

다용도 실시간 경사각과 방위각 연속 측정 시스템 개발연구

  • Kim, Gyuhyun (Department of Geophysical Exploration, University of Science and Technology) ;
  • Cho, Sung-Ho (Department of Geophysical Exploration, University of Science and Technology) ;
  • Jung, Hyun-Key (Department of Exploration Geophysics and Mining Engineering, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Hyosun (Department of Geophysical Exploration, University of Science and Technology) ;
  • Son, Jeong-Sul (Department of Exploration Geophysics and Mining Engineering, Korea Institute of Geoscience and Mineral Resources)
  • 김규현 (과학기술연합대학원대학교 물리탐사공학과) ;
  • 조성호 (과학기술연합대학원대학교 물리탐사공학과) ;
  • 정현기 (한국지질자원연구원 자원탐사개발연구실) ;
  • 이효선 (과학기술연합대학원대학교 물리탐사공학과) ;
  • 손정술 (한국지질자원연구원 자원탐사개발연구실)
  • Received : 2013.09.30
  • Accepted : 2013.10.10
  • Published : 2013.10.31

Abstract

In geophysics and geophysical exploration fields, we can use information about inclination and azimuth in various ways. These include borehole deviation logging for inversion process, real-time data acquisition system, geophysical monitoring system, and so on. This type of information is also necessarily used in the directional drilling of shale gas fields. We thus need to develop a subminiature, low-powered, multi-functional inclination and azimuth measurement system for geophysical exploration fields. In this paper, to develop real-time measurement system, we adopt the high performance low power Micro Control Unit (made with state-of-the-art Complementary Metal Oxide Semiconductor technology) and newly released Micro Electro Mechanical Systems Attitude Heading Reference System sensors. We present test results on the development of a multifunctional real-time inclination and azimuth measurement system. The developed system has an ultra-slim body so as to be installed in 42mm sonde. Also, this system allows us to acquire data in real-time and to easily expand its application by synchronizing with a depth encoder or Differential Global Positioning System.

최근 지구물리 물리탐사 분야에서 경사각과 방위각 정보는 시추공 물리검층 및 물리탐사 자료보정을 위한 시추공 편차검층, 이동형 실시간 자료획득 시스템, 기타 지구물리 모니터링 시스템 등 다양하게 활용되면서 그 중요성이 높아지고 있다. 특히 최근 셰일가스의 개발이 가능하게 한 방향시추 기술에서도 경사각과 방위각 정보는 필수일 정도로 그 응용범위가 매우 넓다. 따라서 여러 분야에 응용될 수 있는 경사각과 방위각 측정 시스템의 초소형 옥외 저전력 운용이 절실해졌다. 본 논문에서는 최신 CMOS 저전력, 고성능 MCU 및 멤스(MEMS) 자세방위기준장치(AHRS)를 도입하여 초소형, 저전력으로 제작된 다용도 야외시험용 실시간 경사각과 방위각 연속 측정 시스템 개발 연구의 결과를 제시하고자 한다. 시스템은 최소 지름 42 mm의 존데 내에 설치될 수 있도록 초슬림 형태로 제작되었으며 실시간 데이터 획득이 가능할 뿐만 아니라 엔코더, DGPS 연동으로 운용 확장이 가능하여 다양한 응용이 기대된다.

Keywords

References

  1. Answers, 2003, McGraw-Hill Science & Technology Encyclopedia: Photoclinometer, http://www.answers.com/ topic/photoclinometer (July 22th 2013)
  2. Choi J.R., Kim S.S., Park S.K., Shin K.S., and Kang B.C., 2013, A case study of electrical resistivity and borehole imaging methods for detecting underground cavities and monitoring ground subsidence at abandoned underground mines, Jour. Korean Earth Science Society, 34, 3, 195-208. (in Korean) https://doi.org/10.5467/JKESS.2013.34.3.195
  3. Cho S.H., Jung H.K., Lee H.Y., and Lee H.S., 2011, Development of DGPS SP exploration system based on iOS App, 2011 Spring Joint Annual Conference of the Geological Societies in Korea, 183-184. (in Korean)
  4. Crain E.R., 2005, Crain's petrophysical handbook, Dipmeter Logs, http://www.spec2000.net/07-diplog.htm (July 23th 2013)
  5. Jung H.K., 2008, Future and present state of geophysical data acquisition system for field exploration measurement technology, 2008 Joint Conference of the International Year of Planet Earth, p. 123. (in Korean)
  6. Jung H.K., Bang E.S., Cho S.H., Lee H.S., Lee H.Y., and Bae J.H., 2011, USN based measurement system development and field applicability for mineral resources exploration, 2011 Fall Conference of the Korean Earth Science Society, 57-58. (in Korean)
  7. Jung H.K., Cho S.H., Lee H.S., Bae J.H., and Lee H.Y., 2011, Smart device App. for Geophysical exploration, 2011 Fall Joint Annual Conference of the Geological Societies in Korea, p. 113. (in Korean)
  8. Jung H.K., Cho S.H., Lee H.S., and Park S.G., 2012, Evolution of geophysical exploration field measurement for mineral resources exploration, 2012 Fall Conference of the Korean Earth Science Society, 186-188. (in Korean)
  9. Kang J.S., Cha Y.H., Jo C.H., Choi C.H., Shim W.H., and Park Y.S., 2006, A case of seismic crosshole tomography applying borehole deviation correction, 2006 Conference of the Korean Society of Earth and Exploration Geophysics, 221-224. (in Korean)
  10. Lee H.S., Rim H.R., Jung H.J., Jung H.K., and Yang J.M., 2010, Detecting steel pile using bore-hole 3-components fluxgate magnetometer, Jour. Korean Earth Science Society, 31, 7, 673-680. (in Korean) https://doi.org/10.5467/JKESS.2010.31.7.673
  11. Pei H.F., Yin J.H., and Jin W., 2013, Development of novel optical fiber sensors for measuring tilts and displacements of geotechnical structures, Measurement Science and Technology, 24, 10-24.
  12. Song S.H., Lee G.S., Um J.Y., and Suh J.J., 2011, Resistivity imaging using borehole electrical resistivity tomography: A case of land subsidence in karst area due to the excessive groundwater withdrawal, Jour. Korean Earth Science Society, 32, 6, 537-547. (in Korean) https://doi.org/10.5467/JKESS.2011.32.6.537
  13. Wells B., 2004, The latest developments in laser profiling, borehole deviation and laser enhanced videometry, Measurement Devices Ltd, http://alphageofisica.com.br/mdl/dowmdl.htm (July 22th 2013)