Velocity-porosity relationships in oceanic basalt from eastern flank of the Juan de Fuca Ridge: The effect of crack closure on seismic velocity

Juan do Fuca 해저산맥의 동쪽 측면으로부터 얻은 해양성 현무암의 속도와 공극률의 관계: 균열닫힘이 탄성파 속도에 미치는 영향

  • Tsuji, Takeshi (Department of Civil and Earth Resources Engineering, Kyoto University, Katsura Campus) ;
  • Iturrino, Gerardo J. (Lamont-Doherty Earth Observatory of Columbia University)
  • 십건 (쿄토 대학, 공학 연구과 사회기반공학) ;
  • Published : 2008.02.29

Abstract

To construct in situ velocity-porosity relationships for oceanic basalt, considering crack features, P- and S-wave velocity measurements on basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge were carried out under confining pressures up to 40 MPa. Assuming that the changes in velocities with confining pressures are originated by micro-crack closure, we estimated micro-crack aspect ratio spectra using the Kuster-$Toks{\ddot{o}}z$ theory. The result demonstrates that the normalised aspect ratio spectra of the different samples have similar characteristics. From the normalised aspect ratio spectrum, we then constructed theoretical velocity-porosity relationships by calculating an aspect ratio spectrum for each porosity. In addition, by considering micro-crack closure due to confining pressure, a velocity-porosity relationship as a function of confining pressure could be obtained. The theoretical relationships that take into account the aspect ratio spectra are consistent with the observed relationships for over 100 discrete samples measured at atmospheric pressure, and the commonly observed pressure dependent relationships for a wide porosity range. The agreement between the laboratory-derived data and theoretically estimated values demonstrates that the velocity-porosity relationships of the basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge, and their pressure dependence, can be described by the crack features (i.e. normalised aspect ratio spectra) and crack closure.

해양성 현무암층에 대해 현장에서의 속도와 공극률의 관계를 알기 위해서 Juan do Fuca 해저산맥의 동쪽 측면으로부터 채취한 현무암 시료들에 대해 최고 40MPa 구속압력(confining pressure)하에서 균열 특성을 고려하며 P파와 S파 속도를 측정하였다. 구속압력에 따른 속도의 변화는 미세균열의 닫힘(microcrack closure)에 기인한다고 가정하고, Kuster-$Toks{\ddot{o}}z$ 이론을 이용하여 미세균열의 개구비 스펙트라(micro-crack aspect ratio spectra)를 측정하였다. 그 결과 서로 다른 시료들의 정규화된 개구비 스펙트라들이 유사한 특성을 갖는다는 것을 보여주었다. 그리고 나서 정규화된 개구비 스펙트럼(spectrum)으로부터, 각 공극률에 대한 개구비 스펙트럼을 계산함으로써 이론적인 속도와 공극률의 관계를 만들었다. 또한 구속압력에 따른 미세균열 닫힘을 고려하여 구속압력의 함수로서의 속도-공극률 관계를 얻을 수 있었다. 개구비 스펙트라를 고려한 이론적인 관계는 대기압하에서 측정된 100개가 넘는 시료들에 대해 관찰된 관계와 잘 일치하고, 넓은 범의의 공극률에 대해 일반적으로 관찰되는 압력 의존적인 관계와도 잘 일치된다. 실험에서 유도된 자료들과 이론적으로 계산된 값들의 일치를 통해 Juan de Fuca 해저산맥의 동쪽 측면으로부터 얻어진 현무암 시료의 속도와 공극률의 관계는 균열의 특성(즉, 정규화된 개구비 스펙트라)과 균열 담힘에 의해 설명되어질 수 있음을 알 수 있다.

Keywords

References

  1. Alt, J. C., Honnorez, J., Laverne, C., and Emmermann, R., 1986, Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project hole 504B: mineralogy, chemistry, and evolution of seawater-basalt interactions: Journal of Geophysical Research 91, 10309-10335 https://doi.org/10.1029/JB091iB10p10309
  2. Berryman, J. G., 1980, Long-wavelength propagation in composite elastic media: Journal of the Acoustical Society of America 68, 1809-1831. doi: 10.1121/1.385171
  3. Berryman, J. G., and Berge, P. A., 1996, Critique of two explicit schemes for estimating elastic properties of multiphase composites: Mechanics of Materials 22, 149-164. doi: 10.1016/0167-6636(95)00035-6
  4. Biot, M. A., 1955, Theory of elasticity and consolidation for a porous anisotropic solid: Journal of Applied Physics 26, 115-135
  5. Birch, F., 1960, The velocity of compressional waves in rocks to 10 kilobars: Journal of Geophysical Research 65, 1083-1102 https://doi.org/10.1029/JZ065i004p01083
  6. Cerney, B., and Carlson, R. L., 1999, The effect of cracks on the seismic velocities of basalt from site 990, southeast Greenland margin, in H. C Larsen, R. A. Duncan, J. F. Allan, and K. Brooks, eds. Proceedings of the Ocean Drilling Program, Scientific Results 163: College Station, TX (Ocean Drilling Program), 29-35
  7. Cheng, C. H., and Toks¨oz, M.N., 1979, Inversion of seismic velocities for the pore aspect ratio spectrum of a rock: Journal of Geophysical Research 84, 7533-7543 https://doi.org/10.1029/JB084iB13p07533
  8. Davis, E. E., and Currie, R. G., 1993, Geophysical observations of the northern Juan de Fuca Ridge system: lessons in sea-floor spreading: Canadian Journal of Earth Sciences 30, 278-300 https://doi.org/10.1139/e93-023
  9. Expedition 301 Scientists, 2005, Site U1301, in A. T. Fisher, T. Urabe, A. Klaus, and the Expedition 301 Scientists, Proceedings of the Integrated Ocean Drilling Program 301, 2005: College Station TX (Integrated Ocean Drilling Program Management International, Inc.), doi: 10.2204/iodp.proc.301.106
  10. Fisher, A. T., Becker, K., and Davis, E. E., 1997, The permeability of young oceanic crust east of Juan de Fuca Ridge determined using borehole thermal measurements: Geophysical Research Letters 24, 1311-1314. doi: 10.1029/97GL01286
  11. Fisher, A. T, and Davis, E. E., 2000, An introduction to the scientific results of Leg 168, in A. T. Fisher, E. E. Davis, and C. Escutia, eds, Proceedings of the Ocean Drilling Program, Scientific Results, 168, College Station TX (Ocean Drilling Program), 3-5
  12. Fisher, A. T., Urabe, T., and Klaus, A., and the Expedition 301 Scientists, 2005, Integrated Ocean Drilling Program, U.S. Implementing Organization Expedition 301, Scientific Prospectus, The hydrogeologic architecture of basaltic oceanic crust: compartmentalization, anisotropy, microbiology, and crustal-scale properties on the eastern flank of Juan de Fuca Ridge
  13. Johnston, D. H., Toksoz, M. N., and Timur, A., 1979, Attenuation of seismicwaves in dry and saturated rocks. II. Mechanisms Geophysics 44, 691-711. doi: 10.1190/1.1440970
  14. Hudson, J. A., 1981,Wave speeds and attenuation of elasticwaves in material containing cracks: Geophysical Journal of the Royal Astronomical Society 64, 133-150 https://doi.org/10.1111/j.1365-246X.1981.tb02662.x
  15. Hyndman, R. D., 1979, Poisson's ratio in the oceanic crust: a review Tectonophysics 59, 321-333. doi: 10.1016/0040-1951(79)90053-2
  16. Knight, R., and Nolen-Hoeksema, R., 1990, A laboratory study of the dependence of elastic wave velocities on pore scale fluid distribution: Geophysical Research Letters 17, 1529-1532 https://doi.org/10.1029/GL017i010p01529
  17. Kuster, G. T., and Toks¨oz, M. N., 1974, Velocity and attenuation of seismic waves in two-phase media, Part 1. Theoretical formulations: Geophysics 39, 587-606. doi: 10.1190/1.1440450
  18. Ludwig, R. J., Iturrino, G. J., and Rona, P. A., 1998, Seismic velocityporosity relationship of sulfide, sulfate, and basalt samples from the TAG hydrothermal mound, in P.M. Herzig, S. E. Humphris, D. J. Miller, R. A. Zierenberg, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 158: College Station, TX (Ocean Drilling Program), 313-327
  19. Mavko, G., Mukerji, T., and Dvorkin, J., 1998, The Rock Physics Handbook, Tools for Seismic Analysis of Porous Media, Cambridge University Press
  20. Shearer, P. M., 1988, Cracked media, Poisson's ratio and the structure of the upper oceanic crust: Geophysical Journal 92, 357-362. doi: 10.1111/j.1365-246X.1988.tb01149.x
  21. Swift, S. A., Lizarralde, D., Stephen, R. A., and Hoskins, H., 1998, Velocity structure in upper ocean crust at Hole 504B from vertical seismic profiles: Journal of Geophysical Research 103, 15361-15376. doi: 10.1029/98JB00766
  22. Toksoz, M. N., Cheng, C. H, and Timur, A., 1976, Velocity of seismic waves in porous rocks: Geophysics 41, 621-645. doi: 10.1190/1.1440639
  23. Toksoz, M. N., Johnston, D. H., and Timur, A., 1979, Attenuation of seismic waves in dry and saturated rocks. 1. Laboratory measurements: Geophysics 44, 681-690. doi: 10.1190/1.1440969
  24. Tompkins, M. J., and Christensen, N. L., 1999, Effect of pore pressure on compressional wave attenuation in a young oceanic basalt: Geophysical Research Letters 26, 1321-1324. doi: 10.1029/1999GL900216
  25. Tsuji, T., and Yamaguchi, H., 2007, Improvement of Mineral Mapping Method: Application of Neural Network System to Elemental Maps by Electron Microprobe Analyzer, Proceedings of the 117th SEGJ Conference, 1-4
  26. Walsh, J. B., 1966, Seismic attenuation in rock due to friction: Journal of Geophysical Research 71, 2591-2599 https://doi.org/10.1029/JZ071i010p02591
  27. Wepfer,W.W., and Christensen, N. I., 1991, Q structure of the oceanic crust: Marine Geophysical Researches 99, 3043-3056
  28. Wilkens, R. H., Christensen, and N. I., Slater, L., 1983, High-pressure seismic studies of Leg 69 and 70 basalts, in J. R. Cann, M. G. Langseth, J. Honnorez, R. P. Von Herzen, and S. M. White, et al., Initial Reports of the Deep Sea Drilling Project 69, 683-686
  29. Wilkens, R. H., Schultz, D., and Carlson, R. L., 1988, Relationship of resistivity, velocity, and porosity for basalts from downhole well logging measurements in Hole 418A, in M. H. Salisbury and J.H. Scott, et al. Proceedings of the Ocean Drilling Program, Scientific Results 102, 69-78
  30. Wilkens, R. H., Fryer, G. J., and Karsten, J., 1991, Evolution of porosity and seismic structure of upper oceanic crust: importance of aspect ratios: Journal of Geophysical Research 96, 17891-17995 https://doi.org/10.1029/91JA00794
  31. Wilkens, R. H., and Salisbury, M. H., 1996, Microstructure and physical properties of samples from Hole 896A, in J. C. Alt, H. Kinoshita, L. B. Stokking, and P. J. Michael, et al. Proceedings of the Ocean Drilling Program, Scientific Results 148B, 365-374