• Title/Summary/Keyword: Micro Cell

Search Result 1,243, Processing Time 0.028 seconds

Extrusion process Analysis and Evaluation of Mechanical property for Micro Multi Cell Tube with 4 hole (4 홀 Micro Multi Cell Tube 의 압출공정 해석 및 기계적 특성 평가)

  • 이정민;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.397-400
    • /
    • 2004
  • The direct extrusion with porthole die can produce condenser tube which has the competitive power in costs and qualities compared with the existing conform extrusion. In general, porthole die extrusion has a great advantage in the forming that produces the hollow sections difficult to produce by conventional extrusion with a mandrel on the stem. Especially, condenser tube manufactured by porthole die belongs to sophisticated part and demands tighter dimension tolerance and higher surface finish than any other part. In order to confirm the general of porthole die extrusion, we perform the 3D FE analysis of hot porthole extrusion in non-steady state by using DEFORM 3D and investigate a pattern of elastic deformation for porthole die through the stress analysis using ANSYS 5.5 during extrusion process.

  • PDF

Investigation of Laser Scattering Pattern and Defect Detection Based on Rayleigh Criterion for Crystalline Silicon Wafer Used in Solar Cell (태양전지 실리콘 웨이퍼에서의 레일리기준 기반 레이저산란 패턴 분석 및 결함 검출)

  • Yean, Jeong-Seung;Kim, Gyung-Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.606-613
    • /
    • 2011
  • In this paper, patterns of laser scattering and detection of micro defects have been investigated based on Rayleigh criterion for silicon wafer in solar cell. Also, a new laser scattering mechanism is designed using characteristics of light scattering against silicon wafer surfaces. Its parameters are to be optimally selected to obtain effective and featured patterns of laser scattering. The optimal parametric ranges of laser scattering are determined using the mean intensity of laser scattering. Scattering patterns of micro defects are investigated at the extracted parameter region. Among a lot of pattern features, both maximum connected area and number of connected component in patterns of laser scattering are regarded as the important information for detecting micro defects. Their usefulness is verified in the experiment.

A Numerical Simulation based on Cell-centered Scheme for Contractive and Dilative Motion on Axisymmetric Micro-hydro machine (셀중심법에 의한 축대칭 극소 로봇의 압축팽창운동에 대한 수치적인 연구)

  • 강효길;김문찬;전호환
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.90-97
    • /
    • 2004
  • Flow mechanism of contractive and dilative motion is numerically investigated to obtain a propulsive force in highly viscous fluid. An axisymmetric code is developed with unstructured grid system based on cell-centered scheme. It is validated by comparing with the results of Stokes approximation for the problem of uniform flow past a sphere in low Reynolds number(R$_{n}$=1). The validated code is applied to the simulation of contractive and dilative periodic motion of body whose results are quantitatively compared with the two dimensional case. In order to investigate the grid dependency, two different grids are applied to the present computations. The present study provides key information for the development of an axisymmetric Micro-hydro-robot.t.

Flexible Liquid Crystal Film Using Continuous Process

  • Liao, Chi-Chang;Wang, Hsing-Lung;Liu, Kang-Hung;Chen, Ru-De;Chang, Chih-Yuan;Jeng, Shie-Chang;Lin, Yan-Rung;Lu, Kevin;Chang, Rick;Chen, Jerry
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.73-75
    • /
    • 2007
  • Micro-cell LC film and polymer network liquid crystal (PNLC) film by using continuous compatible process have been developed . A high-contrast micro-cell LC film has a strong potential as a high-performance flexible device. PNLC film has the low driving voltage. Both films show the characteristics of lightness, thinness and mechanical stability.

  • PDF

Micro Cell Counter Integrated with An Oxygen Micropump (산소 미세 펌프가 내장된 미세 세포 계수기)

  • Son, Sang-Uk;Choi, Yo-Han;Lee, Seung-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1159-1165
    • /
    • 2004
  • This paper describes fabrication of a micro cell counter integrated with an oxygen micropump and counting experiment with Sephadex G-25 beads ($70{\sim}100\;{\mu}m$). The pumping part consisted of a microheater, catalyst (manganese dioxide) enveloped with paraffin, hydrogen peroxide, and microchannel, and the counting part consisted of collimated light, a microwindow, and a phototransistor including an external circuit. The micropump generated oxygen gas by decomposing hydrogen peroxide with manganese dioxide, which was initiated by melting the paraffin with the microheater, and pumped beads in the microchannel. When the beads passed the microwindow, they shaded the collimated light and changed the illumination on the phototransistor, which caused the current variation in the circuit. The signals, according to the bead size, reached up to 22 mV with noise level of 2 mV during 50 seconds and the numbers of peaks were analyzed by magnitude.

Microfluidic Control for Biological Cell Orientation

  • Namkung, Young-Woo;Park, Jung-Yul;Kim, Byung-Kyu;Park, Jong-Oh;Kim, Jin-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2457-2460
    • /
    • 2003
  • There is a great demand to manipulate biological cell autonomously since biologist should spend much time to obtain skillful manipulation techniques. For this purpose, we propose a cell chip to control, carry, fix and locate the cell. In this paper, we focus on the cell rotator to rotate individual biological cell based on a micro fluidics technology. The cell rotator consists of injection hole and rotation well to rotate a biological cell properly. Under the variation of flow rate in injection hole, the angular velocity of a biological cell is evaluated to find the feasibility of the proposed rotation method. As a practical experiment, Zebrafish egg is employed. Based on this research, we find the possibility of non-contact rotation way that can highly reduce the damage of the biological cell during manipulation. To realize an autonomous biological cell manipulation, a cell chip with manipulation well and micro channel in this research will be utilized effectively in near future.

  • PDF

The Prediction of Time-Dependent Thermal Conductivity of Polyurethane Foam with Cell Gas Analysis (셀 가스분석을 이용한 우레탄폼의 열전도도 장기변화 예측)

  • Lee, Hyo-Jin;Chun, Jong-Han;Kim, Jin-Seon;Lee, Jin-Bok;Kang, Nam-Goo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1367-1372
    • /
    • 2009
  • A proprietary device is adopted to break out the membrane of cell in the rigid polyurethane foam. As it is known, the membrane of cell is hardly tearing-off thoroughly in a mechanical way due to both its elastic characteristic and micro sized pores. In this study, a novel experimental approach is introduced to burst out all gases inside the cells of the rigid polyurethane foam by abrasively grinding micro-cells completely into fine powder. The biggest advantage of this approach is to be capable of releasing all gases out from the cell even in the micro pores. As clearly reflected from the repeatability, the accuracy of the result is highly improved and high confidence in the data sets as well. For the measurements of not only gas composition but partial pressure for each gas simultaneously as well, a precision gas mass spectrometer is used in-line directly to the abrasive grinding device. To control the starting point of the polyurethane foam, all samples were prepared on site in the laboratory. Manufactured time is one of the most critical factors in characterization of cell gas composition because it is known that one of gas composition, especially, carbon dioxide, is diffused out dramatically in a short period of time as soon as it is foamed.

  • PDF

Research for ultra precision linear motor by using piezo stack actuators (적층형 압전재료를 이용한 초정밀 선형 모터에 관한 연구)

  • 임장환;김재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.649-654
    • /
    • 2003
  • This paper is focused on the research of the ultra precision linear motor by using piezo stack actuators. The development of linear motor which can be controlled nano or micro scale is necessary for the precision manufacturing. Self-moving-cell principle is used for the design of linear motor Self-moving-cell linear motor is consisted of three cell structures, and each cell has two shells and one piezo-stack actuator. Each cell can do clamping and moving by two shell structures. The shell structure deformation by piezo stack actuator can move the linear motor by losing the clamping between the shall and guideway. This paper presents the design, manufacturing and test of the motor.

  • PDF

Effect of Specific Interaction of Multi-Ligands on the Specific Interaction between Particle and Cell (멀티 리간드의 특이적 상호작용이 입자-세포간 상호작용에 미치는 영향)

  • Yoon, Jung Hyun;Lee, Sei Young
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.94-101
    • /
    • 2022
  • Recent advancement of micro/nano technology enables the development of diverse micro/nano particle-based delivery systems. Due to the multi-functionality and engineerability, particle-based delivery system are expected to be a promising method for delivery to the target cell. Since the particle-based delivery system should be delivered to the various kinds of target cell, including the cardiovascular system, cancer cell etc., it is frequently decorated with multiple kinds of targeting molecule(s) to induce specific interaction to the target cell. The surface decorated molecules interact with the cell surface expressed molecule(s) to specifically form a firm adhesion. Thus, in this study, the probability of adhesion is estimated to predict the possibility to form a firm adhesion for the multi-ligand decorated particle-based delivery system.